These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1509 related articles for article (PubMed ID: 35671654)

  • 1. A convolution neural network with multi-level convolutional and attention learning for classification of cancer grades and tissue structures in colon histopathological images.
    Dabass M; Vashisth S; Vig R
    Comput Biol Med; 2022 Aug; 147():105680. PubMed ID: 35671654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MTU: A multi-tasking U-net with hybrid convolutional learning and attention modules for cancer classification and gland Segmentation in Colon Histopathological Images.
    Dabass M; Vashisth S; Vig R
    Comput Biol Med; 2022 Nov; 150():106095. PubMed ID: 36179516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Atrous Convolved Hybrid Seg-Net Model with residual and attention mechanism for gland detection and segmentation in histopathological images.
    Dabass M; Dabass J
    Comput Biol Med; 2023 Mar; 155():106690. PubMed ID: 36827788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colon and lung cancer classification from multi-modal images using resilient and efficient neural network architectures.
    Uddin AH; Chen YL; Akter MR; Ku CS; Yang J; Por LY
    Heliyon; 2024 May; 10(9):e30625. PubMed ID: 38742084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LPCANet: Classification of Laryngeal Cancer Histopathological Images Using a CNN with Position Attention and Channel Attention Mechanisms.
    Zhou X; Tang C; Huang P; Mercaldo F; Santone A; Shao Y
    Interdiscip Sci; 2021 Dec; 13(4):666-682. PubMed ID: 34138403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning for colon cancer histopathological images analysis.
    Ben Hamida A; Devanne M; Weber J; Truntzer C; Derangère V; Ghiringhelli F; Forestier G; Wemmert C
    Comput Biol Med; 2021 Sep; 136():104730. PubMed ID: 34375901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Color-CADx: a deep learning approach for colorectal cancer classification through triple convolutional neural networks and discrete cosine transform.
    Sharkas M; Attallah O
    Sci Rep; 2024 Mar; 14(1):6914. PubMed ID: 38519513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LiverNet: efficient and robust deep learning model for automatic diagnosis of sub-types of liver hepatocellular carcinoma cancer from H&E stained liver histopathology images.
    Aatresh AA; Alabhya K; Lal S; Kini J; Saxena PUP
    Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1549-1563. PubMed ID: 34053009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepHistoNet: A robust deep-learning model for the classification of hepatocellular, lung, and colon carcinoma.
    Kadirappa R; S D; R P; Ko SB
    Microsc Res Tech; 2024 Feb; 87(2):229-256. PubMed ID: 37750465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. StoHisNet: A hybrid multi-classification model with CNN and Transformer for gastric pathology images.
    Fu B; Zhang M; He J; Cao Y; Guo Y; Wang R
    Comput Methods Programs Biomed; 2022 Jun; 221():106924. PubMed ID: 35671603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weakly Supervised Learning using Attention gates for colon cancer histopathological image segmentation.
    Ben Hamida A; Devanne M; Weber J; Truntzer C; Derangère V; Ghiringhelli F; Forestier G; Wemmert C
    Artif Intell Med; 2022 Nov; 133():102407. PubMed ID: 36328667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features.
    Xu Y; Jia Z; Wang LB; Ai Y; Zhang F; Lai M; Chang EI
    BMC Bioinformatics; 2017 May; 18(1):281. PubMed ID: 28549410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-scale multi-attention network for diabetic retinopathy grading.
    Xia H; Long J; Song S; Tan Y
    Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38035368
    [No Abstract]   [Full Text] [Related]  

  • 14. A Parallel Convolutional Network Based on Spiking Neural Systems.
    Zhou C; Ye L; Peng H; Liu Z; Wang J; Ramírez-De-Arellano A
    Int J Neural Syst; 2024 May; 34(5):2450022. PubMed ID: 38487872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization.
    Kainz P; Pfeiffer M; Urschler M
    PeerJ; 2017; 5():e3874. PubMed ID: 29018612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WeGleNet: A weakly-supervised convolutional neural network for the semantic segmentation of Gleason grades in prostate histology images.
    Silva-Rodríguez J; Colomer A; Naranjo V
    Comput Med Imaging Graph; 2021 Mar; 88():101846. PubMed ID: 33485056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAM-QUS guided self-tuning modular CNNs with multi-loss functions for fully automated breast lesion classification in ultrasound images.
    Tasnim J; Hasan MK
    Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38056017
    [No Abstract]   [Full Text] [Related]  

  • 18. An attention-based deep learning for acute lymphoblastic leukemia classification.
    Jawahar M; Anbarasi LJ; Narayanan S; Gandomi AH
    Sci Rep; 2024 Jul; 14(1):17447. PubMed ID: 39075091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IL-MCAM: An interactive learning and multi-channel attention mechanism-based weakly supervised colorectal histopathology image classification approach.
    Chen H; Li C; Li X; Rahaman MM; Hu W; Li Y; Liu W; Sun C; Sun H; Huang X; Grzegorzek M
    Comput Biol Med; 2022 Apr; 143():105265. PubMed ID: 35123138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images.
    Qu X; Lu H; Tang W; Wang S; Zheng D; Hou Y; Jiang J
    Med Phys; 2022 Sep; 49(9):5787-5798. PubMed ID: 35866492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 76.