These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35671668)

  • 1. Processing and mechanical properties of novel biodegradable poly-lactic acid/Zn 3D printed scaffolds for application in tissue regeneration.
    Pascual-González C; de la Vega J; Thompson C; Fernández-Blázquez JP; Herráez-Molinero D; Biurrun N; Lizarralde I; Del Río JS; González C; LLorca J
    J Mech Behav Biomed Mater; 2022 Aug; 132():105290. PubMed ID: 35671668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of 3D printed calcium sulfate filled PLA scaffolds with improved mechanical and degradation properties.
    Ansari MAA; Jain PK; Nanda HS
    J Biomater Sci Polym Ed; 2023 Aug; 34(10):1408-1429. PubMed ID: 36628582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application.
    Choi WJ; Hwang KS; Kwon HJ; Lee C; Kim CH; Kim TH; Heo SW; Kim JH; Lee JY
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110693. PubMed ID: 32204007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Silicon Dioxide and Magnesium Oxide on the Printability, Degradability, Mechanical Strength and Bioactivity of 3D Printed Poly (Lactic Acid)-Tricalcium Phosphate Composite Scaffolds.
    Harb SV; Kolanthai E; Backes EH; Beatrice CAG; Pinto LA; Nunes ACC; Selistre-de-Araújo HS; Costa LC; Seal S; Pessan LA
    Tissue Eng Regen Med; 2024 Feb; 21(2):223-242. PubMed ID: 37856070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.
    Senatov FS; Niaza KV; Zadorozhnyy MY; Maksimkin AV; Kaloshkin SD; Estrin YZ
    J Mech Behav Biomed Mater; 2016 Apr; 57():139-48. PubMed ID: 26710259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of polyethylene glycol on printability, physical and mechanical properties and osteogenic potential of 3D-printed poly (l-lactic acid)/polyethylene glycol scaffold for bone tissue engineering.
    Salehi S; Ghomi H; Hassanzadeh-Tabrizi SA; Koupaei N; Khodaei M
    Int J Biol Macromol; 2022 Nov; 221():1325-1334. PubMed ID: 36087749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications.
    Farto-Vaamonde X; Auriemma G; Aquino RP; Concheiro A; Alvarez-Lorenzo C
    Eur J Pharm Biopharm; 2019 Aug; 141():100-110. PubMed ID: 31112767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fused Filament Fabrication (Three-Dimensional Printing) of Amorphous Magnesium Phosphate/Polylactic Acid Macroporous Biocomposite Scaffolds.
    Elhattab K; Bhaduri SB; Lawrence JG; Sikder P
    ACS Appl Bio Mater; 2021 Apr; 4(4):3276-3286. PubMed ID: 35014414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrusion-based additive manufacturing of Mg-Zn/bioceramic composite scaffolds.
    Dong J; Lin P; Putra NE; Tümer N; Leeflang MA; Huan Z; Fratila-Apachitei LE; Chang J; Zadpoor AA; Zhou J
    Acta Biomater; 2022 Oct; 151():628-646. PubMed ID: 35940565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and finite element simulation of antibacterial 3D printed Poly L-lactic acid scaffolds coated with alginate/magnesium oxide for bone tissue regeneration.
    Angili SN; Morovvati MR; Kardan-Halvaei M; Saber-Samandari S; Razmjooee K; Abed AM; Toghraie D; Khandan A
    Int J Biol Macromol; 2023 Jan; 224():1152-1165. PubMed ID: 36346262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis.
    Cheng CH; Chen YW; Kai-Xing Lee A; Yao CH; Shie MY
    J Mater Sci Mater Med; 2019 Jun; 30(7):78. PubMed ID: 31222566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds.
    Gendviliene I; Simoliunas E; Rekstyte S; Malinauskas M; Zaleckas L; Jegelevicius D; Bukelskiene V; Rutkunas V
    J Mech Behav Biomed Mater; 2020 Apr; 104():103616. PubMed ID: 31929097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of biomimetic bone grafts with multi-material 3D printing.
    Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E
    Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization.
    Velioglu ZB; Pulat D; Demirbakan B; Ozcan B; Bayrak E; Erisken C
    Connect Tissue Res; 2019 May; 60(3):274-282. PubMed ID: 30058375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration.
    Backes EH; Fernandes EM; Diogo GS; Marques CF; Silva TH; Costa LC; Passador FR; Reis RL; Pessan LA
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111928. PubMed ID: 33641921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micrometer Copper-Zinc Alloy Particles-Reinforced Wood Plastic Composites with High Gloss and Antibacterial Properties for 3D Printing.
    Yang F; Zeng J; Long H; Xiao J; Luo Y; Gu J; Zhou W; Wei Y; Dong X
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32182784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing properties of scaffolds 3D printed with peptide-polymer conjugates.
    Hammerstone DE; Babuska TF; Lazarte S; Krick BA; Chow LW
    Biomater Adv; 2023 Sep; 152():213498. PubMed ID: 37295132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printed Styrax Liquidus (Liquidambar orientalis Miller)-loaded poly (L-lactic acid)/chitosan based wound dressing material: Fabrication, characterization, and biocompatibility results.
    Cakmak HY; Ege H; Yilmaz S; Agturk G; Yontem FD; Enguven G; Sarmis A; Cakmak Z; Gunduz O; Ege ZR
    Int J Biol Macromol; 2023 Sep; 248():125835. PubMed ID: 37473890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.