These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35671690)

  • 21. Predicting pharmaceutical inkjet printing outcomes using machine learning.
    Carou-Senra P; Ong JJ; Castro BM; Seoane-Viaño I; Rodríguez-Pombo L; Cabalar P; Alvarez-Lorenzo C; Basit AW; Pérez G; Goyanes A
    Int J Pharm X; 2023 Dec; 5():100181. PubMed ID: 37143957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer.
    Pavinatto FJ; Paschoal CW; Arias AC
    Biosens Bioelectron; 2015 May; 67():553-9. PubMed ID: 25301685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics.
    Cui Z; Han Y; Huang Q; Dong J; Zhu Y
    Nanoscale; 2018 Apr; 10(15):6806-6811. PubMed ID: 29537024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications.
    Tran TS; Dutta NK; Choudhury NR
    Adv Colloid Interface Sci; 2018 Nov; 261():41-61. PubMed ID: 30318342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human-machine interfaces.
    Kwon YT; Kim YS; Kwon S; Mahmood M; Lim HR; Park SW; Kang SO; Choi JJ; Herbert R; Jang YC; Choa YH; Yeo WH
    Nat Commun; 2020 Jul; 11(1):3450. PubMed ID: 32651424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recyclable conductive nanoclay for direct in situ printing flexible electronics.
    Wu P; Wang Z; Yao X; Fu J; He Y
    Mater Horiz; 2021 Jul; 8(7):2006-2017. PubMed ID: 34846477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Writing of Microfluidic Footpaths by Pyro-EHD Printing.
    Coppola S; Nasti G; Todino M; Olivieri F; Vespini V; Ferraro P
    ACS Appl Mater Interfaces; 2017 May; 9(19):16488-16494. PubMed ID: 28446020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid Machine Learning Method to Determine the Optimal Operating Process Window in Aerosol Jet 3D Printing.
    Zhang H; Moon SK; Ngo TH
    ACS Appl Mater Interfaces; 2019 May; 11(19):17994-18003. PubMed ID: 31012300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Printed, Wireless, Soft Bioelectronics and Deep Learning Algorithm for Smart Human-Machine Interfaces.
    Kwon YT; Kim H; Mahmood M; Kim YS; Demolder C; Yeo WH
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49398-49406. PubMed ID: 33085453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance.
    Kim SY; Kim K; Hwang YH; Park J; Jang J; Nam Y; Kang Y; Kim M; Park HJ; Lee Z; Choi J; Kim Y; Jeong S; Bae BS; Park JU
    Nanoscale; 2016 Oct; 8(39):17113-17121. PubMed ID: 27722626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aerosol Jet Printing Conductive 3D Microstructures from Graphene Without Post-Processing.
    Smith BN; Ballentine P; Doherty JL; Wence R; Hobbie HA; Williams NX; Franklin AD
    Small; 2024 Mar; 20(12):e2305170. PubMed ID: 37946691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reviews on Machine Learning Approaches for Process Optimization in Noncontact Direct Ink Writing.
    Zhang H; Moon SK
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53323-53345. PubMed ID: 34042439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bulge-Free and Homogeneous Metal Line Jet Printing with StarJet Technology.
    Straubinger D; Koltay P; Zengerle R; Kartmann S; Shu Z
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating Machine Learning Techniques for Predicting the Process Characteristics of Stencil Printing.
    Martinek P; Illés B; Codreanu N; Krammer O
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks.
    Shao Y; Wei L; Wu X; Jiang C; Yao Y; Peng B; Chen H; Huangfu J; Ying Y; Zhang CJ; Ping J
    Nat Commun; 2022 Jun; 13(1):3223. PubMed ID: 35680851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible Patterned Electrohydrodynamic Jet Printing Using Orthogonal Deflection Electrodes.
    Li X; Liang J; Xiao J; Zhu L; Wang H; Sun L; Zhang F; Zhang Y; Yin P; Chen L; Wang D
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):46300-46310. PubMed ID: 37733925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational Study of Drop-on-Demand Coaxial Electrohydrodynamic Jet and Printing Microdroplets.
    Abbas Z; Wang D; Lu L; Li Y; Pu C; Chen X; Xu P; Liang S; Kong L; Tang B
    Micromachines (Basel); 2023 Apr; 14(4):. PubMed ID: 37421044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Microscale 3D Printing Based on the Electric-Field-Driven Jet.
    Zhang G; Lan H; Qian L; Zhao J; Wang F
    3D Print Addit Manuf; 2020 Feb; 7(1):37-44. PubMed ID: 36654877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications.
    Wang X; Liu J
    Micromachines (Basel); 2016 Nov; 7(12):. PubMed ID: 30404387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of three machine learning models for self-referral decision support on low back pain in primary care.
    Oude Nijeweme-d'Hollosy W; van Velsen L; Poel M; Groothuis-Oudshoorn CGM; Soer R; Hermens H
    Int J Med Inform; 2018 Feb; 110():31-41. PubMed ID: 29331253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.