These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35671807)

  • 1. Molecular and biochemical characterization of Catharanthus roseus perivine-N
    Levac D; Flores PC; De Luca V
    Phytochemistry; 2022 Sep; 201():113266. PubMed ID: 35671807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Picrinine N-Methyltransferase Belongs to a New Family of γ-Tocopherol-Like Methyltransferases Found in Medicinal Plants That Make Biologically Active Monoterpenoid Indole Alkaloids.
    Levac D; Cázares P; Yu F; De Luca V
    Plant Physiol; 2016 Apr; 170(4):1935-44. PubMed ID: 26848097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rauvolfia serpentina N-methyltransferases involved in ajmaline and Nβ -methylajmaline biosynthesis belong to a gene family derived from γ-tocopherol C-methyltransferase.
    Cázares-Flores P; Levac D; De Luca V
    Plant J; 2016 Aug; 87(4):335-42. PubMed ID: 27122470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The assembly of (+)-vincadifformine- and (-)-tabersonine-derived monoterpenoid indole alkaloids in Catharanthus roseus involves separate branch pathways.
    Williams D; Qu Y; Simionescu R; De Luca V
    Plant J; 2019 Aug; 99(4):626-636. PubMed ID: 31009114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Catharanthus roseus monoterpenoid indole alkaloid pathway in yeast.
    Mistry V; Darji S; Tiwari P; Sharma A
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2337-2347. PubMed ID: 35333954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves.
    Kumar K; Kumar SR; Dwivedi V; Rai A; Shukla AK; Shanker K; Nagegowda DA
    Plant Sci; 2015 Oct; 239():56-66. PubMed ID: 26398791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytochemical genomics of the Madagascar periwinkle: Unravelling the last twists of the alkaloid engine.
    Dugé de Bernonville T; Clastre M; Besseau S; Oudin A; Burlat V; Glévarec G; Lanoue A; Papon N; Giglioli-Guivarc'h N; St-Pierre B; Courdavault V
    Phytochemistry; 2015 May; 113():9-23. PubMed ID: 25146650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tabersonine 3-reductase Catharanthus roseus mutant accumulates vindoline pathway intermediates.
    Edge A; Qu Y; Easson MLAE; Thamm AMK; Kim KH; De Luca V
    Planta; 2018 Jan; 247(1):155-169. PubMed ID: 28894945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geissoschizine synthase controls flux in the formation of monoterpenoid indole alkaloids in a Catharanthus roseus mutant.
    Qu Y; Thamm AMK; Czerwinski M; Masada S; Kim KH; Jones G; Liang P; De Luca V
    Planta; 2018 Mar; 247(3):625-634. PubMed ID: 29147812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Completion of the canonical pathway for assembly of anticancer drugs vincristine/vinblastine in Catharanthus roseus.
    Qu Y; Safonova O; De Luca V
    Plant J; 2019 Jan; 97(2):257-266. PubMed ID: 30256480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inter-organ transport of secologanin allows assembly of monoterpenoid indole alkaloids in a Catharanthus roseus mutant.
    Kidd T; Easson ML; Qu Y; De Luca V
    Phytochemistry; 2019 Mar; 159():119-126. PubMed ID: 30611871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A lesion-mimic mutant of Catharanthus roseus accumulates the opioid agonist, akuammicine.
    Li F; Bordeleau S; Kim KH; Turcotte J; Davis B; Liu L; Bayen S; De Luca V; Dastmalchi M
    Phytochemistry; 2022 Nov; 203():113422. PubMed ID: 36055422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseus.
    Singh SK; Patra B; Paul P; Liu Y; Pattanaik S; Yuan L
    Plant Sci; 2020 Apr; 293():110408. PubMed ID: 32081258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The basic helix-loop-helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus.
    Van Moerkercke A; Steensma P; Gariboldi I; Espoz J; Purnama PC; Schweizer F; Miettinen K; Vanden Bossche R; De Clercq R; Memelink J; Goossens A
    Plant J; 2016 Oct; 88(1):3-12. PubMed ID: 27342401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An engineered combinatorial module of transcription factors boosts production of monoterpenoid indole alkaloids in Catharanthus roseus.
    Schweizer F; Colinas M; Pollier J; Van Moerkercke A; Vanden Bossche R; de Clercq R; Goossens A
    Metab Eng; 2018 Jul; 48():150-162. PubMed ID: 29852273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Present status of Catharanthus roseus monoterpenoid indole alkaloids engineering in homo- and hetero-logous systems.
    Sharma A; Amin D; Sankaranarayanan A; Arora R; Mathur AK
    Biotechnol Lett; 2020 Jan; 42(1):11-23. PubMed ID: 31729591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis.
    Salim V; Yu F; Altarejos J; De Luca V
    Plant J; 2013 Dec; 76(5):754-65. PubMed ID: 24103035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CrMPK3, a mitogen activated protein kinase from Catharanthus roseus and its possible role in stress induced biosynthesis of monoterpenoid indole alkaloids.
    Raina SK; Wankhede DP; Jaggi M; Singh P; Jalmi SK; Raghuram B; Sheikh AH; Sinha AK
    BMC Plant Biol; 2012 Aug; 12():134. PubMed ID: 22871174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating an EMS Mutant Population and Rapid Mutant Screening by Thin-Layer Chromatography Enables the Studies of Monoterpenoid Indole Alkaloids Biosynthesis in Catharanthus Roseus.
    Shahsavarani M; Farzana M; De Luca V; Qu Y
    Methods Mol Biol; 2022; 2505():181-190. PubMed ID: 35732945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast.
    Qu Y; Easson ML; Froese J; Simionescu R; Hudlicky T; De Luca V
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6224-9. PubMed ID: 25918424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.