These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35671825)

  • 1. Membrane translocation of folded proteins.
    Pei D; Dalbey RE
    J Biol Chem; 2022 Jul; 298(7):102107. PubMed ID: 35671825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The twin-arginine protein translocation pathway.
    Berks BC
    Annu Rev Biochem; 2015; 84():843-64. PubMed ID: 25494301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The early mature part of bacterial twin-arginine translocation (Tat) precursor proteins contributes to TatBC receptor binding.
    Ulfig A; Freudl R
    J Biol Chem; 2018 May; 293(19):7281-7299. PubMed ID: 29593092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-exposed domains of TatB involved in the structural and functional assembly of the Tat translocase in
    Fröbel J; Blümmel AS; Drepper F; Warscheid B; Müller M
    J Biol Chem; 2019 Sep; 294(38):13902-13914. PubMed ID: 31341014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The twin-arginine translocation system: a novel means of transporting folded proteins in chloroplasts and bacteria.
    Robinson C
    Biol Chem; 2000 Feb; 381(2):89-93. PubMed ID: 10746739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of Folded Proteins by the Tat System.
    Frain KM; Robinson C; van Dijl JM
    Protein J; 2019 Aug; 38(4):377-388. PubMed ID: 31401776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual targeting of TatA points to a chloroplast-like Tat pathway in plant mitochondria.
    Bennewitz B; Sharma M; Tannert F; Klösgen RB
    Biochim Biophys Acta Mol Cell Res; 2020 Nov; 1867(11):118816. PubMed ID: 32768405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Aspects of Folded Protein Transport by the Twin Arginine Translocase (Tat).
    Cline K
    J Biol Chem; 2015 Jul; 290(27):16530-8. PubMed ID: 25975269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The glove-like structure of the conserved membrane protein TatC provides insight into signal sequence recognition in twin-arginine translocation.
    Ramasamy S; Abrol R; Suloway CJ; Clemons WM
    Structure; 2013 May; 21(5):777-88. PubMed ID: 23583035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peroxisomal matrix protein import: the transient pore model.
    Erdmann R; Schliebs W
    Nat Rev Mol Cell Biol; 2005 Sep; 6(9):738-42. PubMed ID: 16103872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane targeting of a folded and cofactor-containing protein.
    Brüser T; Yano T; Brune DC; Daldal F
    Eur J Biochem; 2003 Mar; 270(6):1211-21. PubMed ID: 12631279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the quality control mechanism of the
    Sutherland GA; Grayson KJ; Adams NBP; Mermans DMJ; Jones AS; Robertson AJ; Auman DB; Brindley AA; Sterpone F; Tuffery P; Derreumaux P; Dutton PL; Robinson C; Hitchcock A; Hunter CN
    J Biol Chem; 2018 May; 293(18):6672-6681. PubMed ID: 29559557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inner Membrane Translocases and Insertases.
    De Geyter J; Smets D; Karamanou S; Economou A
    Subcell Biochem; 2019; 92():337-366. PubMed ID: 31214992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting the twin-arginine translocation pathway using genome-wide analysis.
    Bronstein P; Marrichi M; DeLisa MP
    Res Microbiol; 2004 Dec; 155(10):803-10. PubMed ID: 15567273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal Peptide Hydrophobicity Modulates Interaction with the Twin-Arginine Translocase.
    Huang Q; Palmer T
    mBio; 2017 Aug; 8(4):. PubMed ID: 28765221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and proofreading of proteins by the twin-arginine translocation (Tat) system in bacteria.
    Robinson C; Matos CF; Beck D; Ren C; Lawrence J; Vasisht N; Mendel S
    Biochim Biophys Acta; 2011 Mar; 1808(3):876-84. PubMed ID: 21126506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bacterial twin-arginine translocation pathway.
    Lee PA; Tullman-Ercek D; Georgiou G
    Annu Rev Microbiol; 2006; 60():373-95. PubMed ID: 16756481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double trouble: Bacillus depends on a functional Tat machinery to avoid severe oxidative stress and starvation upon entry into a NaCl-depleted environment.
    Prajapati B; Bernal-Cabas M; López-Álvarez M; Schaffer M; Bartel J; Rath H; Steil L; Becher D; Völker U; Mäder U; van Dijl JM
    Biochim Biophys Acta Mol Cell Res; 2021 Feb; 1868(2):118914. PubMed ID: 33245978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moving folded proteins across the bacterial cell membrane.
    Palmer T; Berks BC
    Microbiology (Reading); 2003 Mar; 149(Pt 3):547-556. PubMed ID: 12634324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twin-arginine-dependent translocation of folded proteins.
    Fröbel J; Rose P; Müller M
    Philos Trans R Soc Lond B Biol Sci; 2012 Apr; 367(1592):1029-46. PubMed ID: 22411976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.