These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 3567194)

  • 1. Free radical-mediated membrane depolarization in renal and cardiac cells.
    Scott JA; Fischman AJ; Khaw BA; Homcy CJ; Rabito CA
    Biochim Biophys Acta; 1987 May; 899(1):76-82. PubMed ID: 3567194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen radicals alter the cell membrane potential in a renal cell line (LLC-PK1) with differentiated characteristics of proximal tubular cells.
    Scott JA; Khaw BA; Homcy CJ; Rabito CA
    Biochim Biophys Acta; 1987 Feb; 897(1):25-32. PubMed ID: 3801479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphologic and functional correlates of plasma membrane injury during oxidant exposure.
    Scott JA; Fischman AJ; Homcy CJ; Fallon JT; Khaw BA; Peto CA; Rabito CA
    Free Radic Biol Med; 1989; 6(4):361-7. PubMed ID: 2707620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excimer laser-induced hydroxyl radical formation and keratocyte death in vitro.
    Shimmura S; Masumizu T; Nakai Y; Urayama K; Shimazaki J; Bissen-Miyajima H; Kohno M; Tsubota K
    Invest Ophthalmol Vis Sci; 1999 May; 40(6):1245-9. PubMed ID: 10235559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of oxygen radical production and lipid peroxidation in the cytotoxicity of cephaloridine on cultured renal epithelial cells (LLC-PK1).
    Kiyomiya K; Matsushita N; Matsuo S; Kurebe M
    J Vet Med Sci; 2000 Sep; 62(9):977-81. PubMed ID: 11039594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitation of intracellular oxidation in a renal epithelial cell line.
    Scott JA; Homcy CJ; Khaw BA; Rabito CA
    Free Radic Biol Med; 1988; 4(2):79-83. PubMed ID: 3345920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen metabolite-induced cytotoxicity to cultured rat gastric mucosal cells.
    Hiraishi H; Terano A; Ota S; Ivey KJ; Sugimoto T
    Am J Physiol; 1987 Jul; 253(1 Pt 1):G40-8. PubMed ID: 3111274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of hydroxyl radical-induced contraction of rat aorta.
    Li J; Li W; Liu W; Altura BT; Altura BM
    Eur J Pharmacol; 2004 Sep; 499(1-2):171-8. PubMed ID: 15363964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reperfusion damage: free radicals mediate delayed membrane changes rather than early ventricular arrhythmias.
    Coetzee WA; Owen P; Dennis SC; Saman S; Opie LH
    Cardiovasc Res; 1990 Feb; 24(2):156-64. PubMed ID: 2328520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide dismutase enhances the formation of hydroxyl radicals in the reaction of 3-hydroxyanthranilic acid with molecular oxygen.
    Iwahashi H; Ishii T; Sugata R; Kido R
    Biochem J; 1988 May; 251(3):893-9. PubMed ID: 2843167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of oxygen radicals on cerebral arterioles.
    Wei EP; Christman CW; Kontos HA; Povlishock JT
    Am J Physiol; 1985 Feb; 248(2 Pt 2):H157-62. PubMed ID: 3918462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estradiol attenuates mitochondrial depolarization in polyol-stressed lens epithelial cells.
    Flynn JM; Cammarata PR
    Mol Vis; 2006 Apr; 12():271-82. PubMed ID: 16617294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of exogenous hydroxyl radical effects on myocardial function, metabolism and ultrastructure.
    Takemura G; Onodera T; Ashraf M
    J Mol Cell Cardiol; 1994 Apr; 26(4):441-54. PubMed ID: 8072002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane depolarization in NRK fibroblasts by bradykinin is mediated by a calcium-dependent chloride conductance.
    De Roos AD; Van Zoelen EJ; Theuvenet AP
    J Cell Physiol; 1997 Feb; 170(2):166-73. PubMed ID: 9009145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferrous ion-EDTA-stimulated phospholipid peroxidation. A reaction changing from alkoxyl-radical- to hydroxyl-radical-dependent initiation.
    Gutteridge JM
    Biochem J; 1984 Dec; 224(3):697-701. PubMed ID: 6441569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ischemia-reperfusion and cell membrane dysfunction.
    Perry MO; Fantini G
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):241-58. PubMed ID: 2637944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of DNA strand breakage by vitamin C and superoxide and the protective roles of catalase and superoxide dismutase.
    Morgan AR; Cone RL; Elgert TM
    Nucleic Acids Res; 1976 May; 3(5):1139-49. PubMed ID: 181730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen peroxide formation and iron ion oxidoreduction linked to NADH oxidation in radish plasmalemma vesicles.
    Vianello A; Zancani M; Macrí F
    Biochim Biophys Acta; 1990 Mar; 1023(1):19-24. PubMed ID: 2156562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): lethal peroxidative membrane injury.
    Janero DR; Hreniuk D; Sharif HM
    J Cell Physiol; 1991 Dec; 149(3):347-64. PubMed ID: 1744169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalase enhances damage to DNA by bleomycin-iron(II): the role of hydroxyl radicals.
    Gutteridge JM; Beard AP; Quinlan GJ
    Biochem Int; 1985 Mar; 10(3):441-9. PubMed ID: 2409975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.