These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 3567195)

  • 1. Sodium-dependent glucose transport by cultured proximal tubule cells.
    Alavi N; Spangler RA; Jung CY
    Biochim Biophys Acta; 1987 May; 899(1):9-16. PubMed ID: 3567195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport and metabolism of glucose by renal proximal tubular cells in primary culture.
    Sakhrani LM; Badie-Dezfooly B; Trizna W; Mikhail N; Lowe AG; Taub M; Fine LG
    Am J Physiol; 1984 Jun; 246(6 Pt 2):F757-64. PubMed ID: 6742127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na+-dependent hexose transport in vesicles from cultured renal epithelial cell line.
    Moran A; Handler JS; Turner RJ
    Am J Physiol; 1982 Nov; 243(5):C293-8. PubMed ID: 7137338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside.
    Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F
    Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of 3-O-methyl D-glucose and beta-methyl D-glucoside by rabbit ileum.
    Holman GD; Naftalin RJ
    Biochim Biophys Acta; 1976 May; 433(3):597-614. PubMed ID: 1276193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High affinity phlorizin receptor sites and their relation to the glucose transport mechanism in the proximal tubule of dog kidney.
    Silverman M; Black J
    Biochim Biophys Acta; 1975 Jun; 394(1):10-30. PubMed ID: 1095065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deoxyglucose and 3-O-methylglucose transport in untreated and ATP-depleted Novikoff rat hepatoma cells. Analysis by a rapid kinetic technique, relationship to phosphorylation and effects of inhibitors.
    Graff JC; Wohlhueter RM; Plagemann PG
    J Cell Physiol; 1978 Aug; 96(2):171-88. PubMed ID: 670303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-O-methyl-D-glucose uptake in isolated rat hepatocytes. Effects of dexamethasone.
    Madar Z; Felig P
    Mol Pharmacol; 1983 Jan; 23(1):141-5. PubMed ID: 6865898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+-dependent sugar transport in a cultured epithelial cell line from pig kidney.
    Rabito CA; Ausiello DA
    J Membr Biol; 1980; 54(1):31-8. PubMed ID: 7205941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-sensitive, probenecid-insensitive p-aminohippuric acid uptake in cultured renal proximal tubule cells of the rabbit.
    Miller JH
    Proc Soc Exp Biol Med; 1992 Mar; 199(3):298-304. PubMed ID: 1347169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of NF-kappaB in high glucose-induced alteration of alpha-methyl-D-glucopyranoside (alpha-MG) uptake in renal proximal tubule cells.
    Han HJ; Jeon YJ; Lee YJ
    Cell Physiol Biochem; 2003; 13(6):375-84. PubMed ID: 14631144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active renal hexose transport. Structural requirements.
    Kleinzeller A; McAvoy EM; McKibbin RD
    Biochim Biophys Acta; 1980 Aug; 600(2):513-29. PubMed ID: 7407126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of D-glucose on oxygen consumption of renal proximal tubules of the Triturus.
    Kuramochi G
    Jpn J Physiol; 1986; 36(2):287-93. PubMed ID: 2426496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar uptake into brush border vesicles from normal human kidney.
    Turner RJ; Silverman M
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2825-9. PubMed ID: 142986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexose transport and phosphorylation by capillaries isolated from rat brain.
    Betz AL; Csejtey J; Goldstein GW
    Am J Physiol; 1979 Jan; 236(1):C96-102. PubMed ID: 434144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of removal of sodium ions from the mucosal solution on sugar absorption by rabbit ileum.
    Naftalin RJ; Holman GD
    Biochim Biophys Acta; 1976 Jan; 419(2):385-90. PubMed ID: 1247565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. alpha-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium.
    Kimmich GA; Randles J
    Am J Physiol; 1981 Nov; 241(5):C227-32. PubMed ID: 7304734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake of radiolabeled glucose analogues by organotypic cerebellar cultures.
    Renkawek K; Spatz M; Murray MR; Klatzo I
    J Neurobiol; 1978 Mar; 9(2):111-9. PubMed ID: 566782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+-sensitive component of 3-O-methylglucose uptake in frog skeletal muscle.
    Kitasato H; Marunaka Y
    J Membr Biol; 1985; 87(3):225-32. PubMed ID: 3878412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+-independent D-glucose transport in rabbit renal basolateral membranes.
    Cheung PT; Hammerman MR
    Am J Physiol; 1988 May; 254(5 Pt 2):F711-8. PubMed ID: 3364579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.