BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 3567196)

  • 1. Shape transformations induced by amphiphiles in erythrocytes.
    Isomaa B; Hägerstrand H; Paatero G
    Biochim Biophys Acta; 1987 May; 899(1):93-103. PubMed ID: 3567196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vesiculation induced by amphiphiles in erythrocytes.
    Hägerstrand H; Isomaa B
    Biochim Biophys Acta; 1989 Jul; 982(2):179-86. PubMed ID: 2473779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with amphiphiles.
    Hägerstrand H; Isomaa B
    Biochim Biophys Acta; 1992 Aug; 1109(2):117-26. PubMed ID: 1520690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape and volume changes in rat erythrocytes induced by surface-active alkyltrimethylammonium salts and sodium dodecyl sulphate.
    Isomaa B; Paatero G
    Biochim Biophys Acta; 1981 Oct; 647(2):211-22. PubMed ID: 7295726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nonionic amphiphiles at sublytic concentrations on the erythrocyte membrane.
    Isomaa B; Hägerstrand H
    Cell Biochem Funct; 1988 Jul; 6(3):183-90. PubMed ID: 2842083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of band 3 protein absence and skeletal structures on amphiphile- and Ca(2+)-induced shape alterations in erythrocytes: a study with lamprey (Lampetra fluviatilis), trout (Onchorhynchus mykiss) and human erythrocytes.
    Hägerstrand H; Danieluk M; Bobrowska-Hägerstrand M; Iglic A; Wróbel A; Isomaa B; Nikinmaa M
    Biochim Biophys Acta; 2000 Jun; 1466(1-2):125-38. PubMed ID: 10825437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeability alterations and antihaemolysis induced by amphiphiles in human erythrocytes.
    Isomaa B; Hägerstrand H; Paatero G; Engblom AC
    Biochim Biophys Acta; 1986 Sep; 860(3):510-24. PubMed ID: 3741865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is calmodulin inhibition involved in shape transformations induced by amphiphiles in erythrocytes?
    Isomaa B; Engblom AC
    Biochim Biophys Acta; 1988 May; 940(1):121-6. PubMed ID: 2835099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expansion of phosphatidylcholine and phosphatidylserine/phosphatidylcholine monolayers by differently charged amphiphiles.
    Białkowska K; Bobrowska-Hägerstrand M; Hägerstrand H
    Z Naturforsch C J Biosci; 2001; 56(9-10):826-30. PubMed ID: 11724390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphiphile-induced antihaemolysis is not causally related to shape changes and vesiculation.
    Hägerstrand H; Isomaa B
    Chem Biol Interact; 1991; 79(3):335-47. PubMed ID: 1717169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gemini (dimeric) surfactant perturbation of the human erythrocyte.
    Dubnicková M; Bobrowska-Hägerstrand M; Söderström T; Iglic A; Hägerstrand H
    Acta Biochim Pol; 2000; 47(3):651-60. PubMed ID: 11310967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bilayer balance and regulation of red cell shape changes.
    Mohandas N; Greenquist AC; Shohet SB
    J Supramol Struct; 1978; 9(3):453-8. PubMed ID: 748684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape.
    Iglic A; Kralj-Iglic V; Hägerstrand H
    Eur Biophys J; 1998; 27(4):335-9. PubMed ID: 9691462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low pH induced shape changes and vesiculation of human erythrocytes.
    Gros M; Vrhovec S; Brumen M; Svetina S; Zeks B
    Gen Physiol Biophys; 1996 Apr; 15(2):145-63. PubMed ID: 8899418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid monolayer expansion by calcium-chlorotetracycline at the air/water interface and, as inferred from cell shape changes, in the human erythrocyte membrane.
    Riquelme G; Jaimovich E; Lingsch C; Behn C
    Biochim Biophys Acta; 1982 Jul; 689(2):219-29. PubMed ID: 7115708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug-induced shape change in erythrocytes correlates with membrane potential change and is independent of glycocalyx charge.
    Nwafor A; Coakley WT
    Biochem Pharmacol; 1985 Sep; 34(18):3329-36. PubMed ID: 4038341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Transformations of erythrocytes shape and its regulation].
    Stasiuk M; Kijanka G; Kozubek A
    Postepy Biochem; 2009; 55(4):425-33. PubMed ID: 20201356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the bilayer in the shape of the isolated erythrocyte membrane.
    Lange Y; Gough A; Steck TL
    J Membr Biol; 1982; 69(2):113-23. PubMed ID: 7131536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The shape of red blood cells as a function of membrane potential and temperature.
    Glaser R
    J Membr Biol; 1979 Dec; 51(3-4):217-28. PubMed ID: 43897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythrocyte morphology reflects the transbilayer distribution of incorporated phospholipids.
    Daleke DL; Huestis WH
    J Cell Biol; 1989 Apr; 108(4):1375-85. PubMed ID: 2925790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.