These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 35672691)
1. Global leaf and root transcriptome in response to cadmium reveals tolerance mechanisms in Arundo donax L. Santoro DF; Sicilia A; Testa G; Cosentino SL; Lo Piero AR BMC Genomics; 2022 Jun; 23(1):427. PubMed ID: 35672691 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional response of giant reed (Arundo donax L.) low ecotype to long-term salt stress by unigene-based RNAseq. Sicilia A; Santoro DF; Testa G; Cosentino SL; Lo Piero AR Phytochemistry; 2020 Sep; 177():112436. PubMed ID: 32563719 [TBL] [Abstract][Full Text] [Related]
3. RNASeq analysis of giant cane reveals the leaf transcriptome dynamics under long-term salt stress. Sicilia A; Testa G; Santoro DF; Cosentino SL; Lo Piero AR BMC Plant Biol; 2019 Aug; 19(1):355. PubMed ID: 31416418 [TBL] [Abstract][Full Text] [Related]
4. Assessing Arundo donax L. in vitro-tolerance for phytoremediation purposes. Cano-Ruiz J; Ruiz Galea M; Amorós MC; Alonso J; Mauri PV; Lobo MC Chemosphere; 2020 Aug; 252():126576. PubMed ID: 32443267 [TBL] [Abstract][Full Text] [Related]
5. Physiological and transcriptomic analyses reveal the cadmium tolerance mechanism of Miscanthus lutarioriparia. Wang J; Liu X; Chen Y; Zhu FL; Sheng J; Diao Y PLoS One; 2024; 19(5):e0302940. PubMed ID: 38748679 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the potential use of Cu-contaminated soils for giant reed (Arundo donax, L.) cultivation as a biomass crop. Coppa E; Astolfi S; Beni C; Carnevale M; Colarossi D; Gallucci F; Santangelo E Environ Sci Pollut Res Int; 2020 Mar; 27(8):8662-8672. PubMed ID: 31907812 [TBL] [Abstract][Full Text] [Related]
7. De novo assembly, functional annotation, and analysis of the giant reed ( Evangelistella C; Valentini A; Ludovisi R; Firrincieli A; Fabbrini F; Scalabrin S; Cattonaro F; Morgante M; Mugnozza GS; Keurentjes JJB; Harfouche A Biotechnol Biofuels; 2017; 10():138. PubMed ID: 28572841 [TBL] [Abstract][Full Text] [Related]
8. Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock. A review. Nsanganwimana F; Marchand L; Douay F; Mench M Int J Phytoremediation; 2014; 16(7-12):982-1017. PubMed ID: 24933898 [TBL] [Abstract][Full Text] [Related]
9. Real-time kinetics of cadmium transport and transcriptomic analysis in low cadmium accumulator Miscanthus sacchariflorus. Guo H; Hong C; Xiao M; Chen X; Chen H; Zheng B; Jiang D Planta; 2016 Dec; 244(6):1289-1302. PubMed ID: 27534966 [TBL] [Abstract][Full Text] [Related]
10. Physiology and selected genes expression under cadmium stress in Arundo donax L. Shaheen S; Ahmad R; Mahmood Q; Mubarak H; Mirza N; Hayat MT Int J Phytoremediation; 2018 Sep; 20(11):1162-1167. PubMed ID: 30156924 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome analysis reveals how cadmium promotes root development and accumulates in Apocynum venetum, a promising plant for greening cadmium-contaminated soil. Jing C; Wang M; Lu X; Prince M; Zhang M; Li Y; Zhang C; Meng C; Zhang L; Zheng Y; Xu Z Ecotoxicol Environ Saf; 2024 Jan; 270():115872. PubMed ID: 38171098 [TBL] [Abstract][Full Text] [Related]
12. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Manousaki E; Kalogerakis N Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858 [TBL] [Abstract][Full Text] [Related]
13. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy. Yu S; Sheng L; Zhang C; Deng H Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 198():88-91. PubMed ID: 29524747 [TBL] [Abstract][Full Text] [Related]
14. Dissection of early transcriptional responses to water stress in Arundo donax L. by unigene-based RNA-seq. Fu Y; Poli M; Sablok G; Wang B; Liang Y; La Porta N; Velikova V; Loreto F; Li M; Varotto C Biotechnol Biofuels; 2016; 9():54. PubMed ID: 26958077 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome Profiling, Physiological and Biochemical Analyses Reveal Comprehensive Insights in Cadmium Stress in Yang T; Pang B; Zhou L; Gu L; Wang H; Du X; Wang H; Zhu B Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279259 [TBL] [Abstract][Full Text] [Related]
16. [Tolerance of Arundo donax to heavy metals]. Han Z; Hu Z Ying Yong Sheng Tai Xue Bao; 2005 Jan; 16(1):161-5. PubMed ID: 15852979 [TBL] [Abstract][Full Text] [Related]
17. Root Exposure to 5-Aminolevulinic Acid (ALA) Affects Leaf Element Accumulation, Isoprene Emission, Phytohormonal Balance, and Photosynthesis of Salt-Stressed Brilli F; Pignattelli S; Baraldi R; Neri L; Pollastri S; Gonnelli C; Giovannelli A; Loreto F; Cocozza C Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457125 [No Abstract] [Full Text] [Related]
18. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi. Gu L; Zhao M; Ge M; Zhu S; Cheng B; Li X Ecotoxicol Environ Saf; 2019 Dec; 186():109744. PubMed ID: 31627093 [TBL] [Abstract][Full Text] [Related]
19. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Pollastri S; Savvides A; Pesando M; Lumini E; Volpe MG; Ozudogru EA; Faccio A; De Cunzo F; Michelozzi M; Lambardi M; Fotopoulos V; Loreto F; Centritto M; Balestrini R Planta; 2018 Mar; 247(3):573-585. PubMed ID: 29124326 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome analysis revealed cadmium accumulation mechanisms in hyperaccumulator Siegesbeckia orientalis L. Xu X; Zhang S; Cheng Z; Li T; Jia Y; Wang G; Yang Z; Xian J; Yang Y; Zhou W Environ Sci Pollut Res Int; 2020 May; 27(15):18853-18865. PubMed ID: 32207009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]