These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 35672714)

  • 1. Evaluation of an intelligent artificial climate chamber for high-throughput crop phenotyping in wheat.
    Ren A; Jiang D; Kang M; Wu J; Xiao F; Hou P; Fu X
    Plant Methods; 2022 Jun; 18(1):77. PubMed ID: 35672714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic detection of three-dimensional crop phenotypes based on a consumer-grade RGB-D camera.
    Song P; Li Z; Yang M; Shao Y; Pu Z; Yang W; Zhai R
    Front Plant Sci; 2023; 14():1097725. PubMed ID: 36778701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Internet of Things to Agriculture-The LQ-FieldPheno Platform: A High-Throughput Platform for Obtaining Crop Phenotypes in Field.
    Fan J; Li Y; Yu S; Gou W; Guo X; Zhao C
    Research (Wash D C); 2023; 6():0059. PubMed ID: 36951796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibrating ultrasonic sensor measurements of crop canopy heights: a case study of maize and wheat.
    Zheng Y; Hui X; Cai D; Shoukat MR; Wang Y; Wang Z; Ma F; Yan H
    Front Plant Sci; 2024; 15():1354359. PubMed ID: 38903436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes.
    Duan T; Chapman SC; Holland E; Rebetzke GJ; Guo Y; Zheng B
    J Exp Bot; 2016 Aug; 67(15):4523-34. PubMed ID: 27312669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Robust Automated Image-Based Phenotyping Method for Rapid Vegetative Screening of Wheat Germplasm for Nitrogen Use Efficiency.
    Nguyen GN; Maharjan P; Maphosa L; Vakani J; Thoday-Kennedy E; Kant S
    Front Plant Sci; 2019; 10():1372. PubMed ID: 31772563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon isotope discrimination as a key physiological trait to phenotype drought/heat resistance of future climate-resilient German winter wheat compared with relative leaf water content and canopy temperature.
    Kunz K; Hu Y; Schmidhalter U
    Front Plant Sci; 2022; 13():1043458. PubMed ID: 36589131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Winter wheat GPC estimation based on leaf and canopy chlorophyll parameters].
    Song XY; Wang JH; Yang GJ; Cui B; Chang H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1917-21. PubMed ID: 25269308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field Evaluation of Wheat Varieties Using Canopy Temperature Depression in Three Different Climatic Growing Seasons.
    Chai Y; Zhao Z; Lu S; Chen L; Hu Y
    Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Climate Change on Phenology of Two Heat-Resistant Wheat Varieties and Future Adaptations.
    Ishtiaq M; Maqbool M; Muzamil M; Casini R; Alataway A; Dewidar AZ; El-Sabrout AM; Elansary HO
    Plants (Basel); 2022 Apr; 11(9):. PubMed ID: 35567180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Land-based crop phenotyping by image analysis: Accurate estimation of canopy height distributions using stereo images.
    Cai J; Kumar P; Chopin J; Miklavcic SJ
    PLoS One; 2018; 13(5):e0196671. PubMed ID: 29795568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Multi-Image Unmanned Aerial Vehicle Based High-Throughput Field Phenotyping of Canopy Temperature.
    Perich G; Hund A; Anderegg J; Roth L; Boer MP; Walter A; Liebisch F; Aasen H
    Front Plant Sci; 2020; 11():150. PubMed ID: 32158459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management.
    Reynolds D; Ball J; Bauer A; Davey R; Griffiths S; Zhou J
    Gigascience; 2019 Mar; 8(3):. PubMed ID: 30715329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CropQuant-Air: an AI-powered system to enable phenotypic analysis of yield- and performance-related traits using wheat canopy imagery collected by low-cost drones.
    Chen J; Zhou J; Li Q; Li H; Xia Y; Jackson R; Sun G; Zhou G; Deakin G; Jiang D; Zhou J
    Front Plant Sci; 2023; 14():1219983. PubMed ID: 37404534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Throughput Field Phenotyping for Plant Height Using UAV-Based RGB Imagery in Wheat Breeding Lines: Feasibility and Validation.
    Volpato L; Pinto F; González-Pérez L; Thompson IG; Borém A; Reynolds M; Gérard B; Molero G; Rodrigues FA
    Front Plant Sci; 2021; 12():591587. PubMed ID: 33664755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Envirotyping for deciphering environmental impacts on crop plants.
    Xu Y
    Theor Appl Genet; 2016 Apr; 129(4):653-673. PubMed ID: 26932121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating Biomass and Canopy Height With LiDAR for Field Crop Breeding.
    Walter JDC; Edwards J; McDonald G; Kuchel H
    Front Plant Sci; 2019; 10():1145. PubMed ID: 31611889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images.
    Fernandez-Gallego JA; Kefauver SC; Gutiérrez NA; Nieto-Taladriz MT; Araus JL
    Plant Methods; 2018; 14():22. PubMed ID: 29568319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Intelligent Analysis Method for 3D Wheat Grain and Ventral Sulcus Traits Based on Structured Light Imaging.
    Huang C; Qin Z; Hua X; Zhang Z; Xiao W; Liang X; Song P; Yang W
    Front Plant Sci; 2022; 13():840908. PubMed ID: 35498671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.