These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 35672799)
1. Dissection of multiple sclerosis genetics identifies B and CD4+ T cells as driver cell subsets. Guo MH; Sama P; LaBarre BA; Lokhande H; Balibalos J; Chu C; Du X; Kheradpour P; Kim CC; Oniskey T; Snyder T; Soghoian DZ; Weiner HL; Chitnis T; Patsopoulos NA Genome Biol; 2022 Jun; 23(1):127. PubMed ID: 35672799 [TBL] [Abstract][Full Text] [Related]
2. Deep characterization of paired chromatin and transcriptomes in four immune cell types from multiple sclerosis patients. Fernandes SJ; Ericsson M; Khademi M; Jagodic M; Olsson T; Gomez-Cabrero D; Kockum I; Tegnér J Epigenomics; 2021 Oct; 13(20):1607-1618. PubMed ID: 34676774 [TBL] [Abstract][Full Text] [Related]
3. Genomic regions associated with multiple sclerosis are active in B cells. Disanto G; Sandve GK; Berlanga-Taylor AJ; Morahan JM; Dobson R; Giovannoni G; Ramagopalan SV PLoS One; 2012; 7(3):e32281. PubMed ID: 22396755 [TBL] [Abstract][Full Text] [Related]
4. Induction of brain-infiltrating T-bet-expressing B cells in multiple sclerosis. van Langelaar J; Rijvers L; Janssen M; Wierenga-Wolf AF; Melief MJ; Siepman TA; de Vries HE; Unger PA; van Ham SM; Hintzen RQ; van Luijn MM Ann Neurol; 2019 Aug; 86(2):264-278. PubMed ID: 31136008 [TBL] [Abstract][Full Text] [Related]
5. Integration of epigenetic and genetic profiles identifies multiple sclerosis disease-critical cell types and genes. Ma Q; Shams H; Didonna A; Baranzini SE; Cree BAC; Hauser SL; Henry RG; Oksenberg JR Commun Biol; 2023 Mar; 6(1):342. PubMed ID: 36997638 [TBL] [Abstract][Full Text] [Related]
6. Combining evidence from four immune cell types identifies DNA methylation patterns that implicate functionally distinct pathways during Multiple Sclerosis progression. Ewing E; Kular L; Fernandes SJ; Karathanasis N; Lagani V; Ruhrmann S; Tsamardinos I; Tegner J; Piehl F; Gomez-Cabrero D; Jagodic M EBioMedicine; 2019 May; 43():411-423. PubMed ID: 31053557 [TBL] [Abstract][Full Text] [Related]
7. Flow cytometric differentiation of Asian and Western types of multiple sclerosis, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and hyperIgEaemic myelitis by analyses of memory CD4 positive T cell subsets and NK cell subsets. Wu XM; Osoegawa M; Yamasaki K; Kawano Y; Ochi H; Horiuchi I; Minohara M; Ohyagi Y; Yamada T; Kira JI J Neurol Sci; 2000 Aug; 177(1):24-31. PubMed ID: 10967179 [TBL] [Abstract][Full Text] [Related]
8. Recognition of viral and self-antigens by T Paroni M; Maltese V; De Simone M; Ranzani V; Larghi P; Fenoglio C; Pietroboni AM; De Riz MA; Crosti MC; Maglie S; Moro M; Caprioli F; Rossi R; Rossetti G; Galimberti D; Pagani M; Scarpini E; Abrignani S; Geginat J J Allergy Clin Immunol; 2017 Sep; 140(3):797-808. PubMed ID: 28237728 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide DNA methylation profiling identifies epigenetic changes in CD4+ and CD14+ cells of multiple sclerosis patients. Kiselev I; Danilova L; Baulina N; Baturina O; Kabilov M; Boyko A; Kulakova O; Favorova O Mult Scler Relat Disord; 2022 Apr; 60():103714. PubMed ID: 35245816 [TBL] [Abstract][Full Text] [Related]
10. MicroRNA-448 promotes multiple sclerosis development through induction of Th17 response through targeting protein tyrosine phosphatase non-receptor type 2 (PTPN2). Wu R; He Q; Chen H; Xu M; Zhao N; Xiao Y; Tu QQ; Zhang W; Bi X Biochem Biophys Res Commun; 2017 May; 486(3):759-766. PubMed ID: 28342869 [TBL] [Abstract][Full Text] [Related]
11. Emerging concepts in autoimmune encephalomyelitis beyond the CD4/T(H)1 paradigm. Batoulis H; Addicks K; Kuerten S Ann Anat; 2010 Aug; 192(4):179-93. PubMed ID: 20692821 [TBL] [Abstract][Full Text] [Related]
12. Repopulation of T, B, and NK cells following alemtuzumab treatment in relapsing-remitting multiple sclerosis. Gilmore W; Lund BT; Li P; Levy AM; Kelland EE; Akbari O; Groshen S; Cen SY; Pelletier D; Weiner LP; Javed A; Dunn JE; Traboulsee AL J Neuroinflammation; 2020 Jun; 17(1):189. PubMed ID: 32539719 [TBL] [Abstract][Full Text] [Related]
13. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Van Kaer L; Postoak JL; Wang C; Yang G; Wu L Cell Mol Immunol; 2019 Jun; 16(6):531-539. PubMed ID: 30874627 [TBL] [Abstract][Full Text] [Related]
14. Vitamin D receptor binding, chromatin states and association with multiple sclerosis. Disanto G; Sandve GK; Berlanga-Taylor AJ; Ragnedda G; Morahan JM; Watson CT; Giovannoni G; Ebers GC; Ramagopalan SV Hum Mol Genet; 2012 Aug; 21(16):3575-86. PubMed ID: 22595971 [TBL] [Abstract][Full Text] [Related]
15. Opioid growth factor and low-dose naltrexone impair central nervous system infiltration by CD4 + T lymphocytes in established experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Hammer LA; Waldner H; Zagon IS; McLaughlin PJ Exp Biol Med (Maywood); 2016 Jan; 241(1):71-8. PubMed ID: 26202376 [TBL] [Abstract][Full Text] [Related]
16. IL-7/IL-7 Receptor Signaling Differentially Affects Effector CD4+ T Cell Subsets Involved in Experimental Autoimmune Encephalomyelitis. Arbelaez CA; Glatigny S; Duhen R; Eberl G; Oukka M; Bettelli E J Immunol; 2015 Sep; 195(5):1974-83. PubMed ID: 26223651 [TBL] [Abstract][Full Text] [Related]
17. Alterations in levels of CD28-/CD8+ suppressor cell precursor and CD45RO+/CD4+ memory T lymphocytes in the peripheral blood of multiple sclerosis patients. Crucian B; Dunne P; Friedman H; Ragsdale R; Pross S; Widen R Clin Diagn Lab Immunol; 1995 Mar; 2(2):249-52. PubMed ID: 7697540 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomics identifies blunted immunomodulatory effects of vitamin D in people with multiple sclerosis. Yeh WZ; Lea R; Stankovich J; Sampangi S; Laverick L; Van der Walt A; Jokubaitis V; Gresle M; Butzkueven H Sci Rep; 2024 Jan; 14(1):1436. PubMed ID: 38228657 [TBL] [Abstract][Full Text] [Related]
19. Depletion of CD52-positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immune-tolerance promoting CD8 T-cell population. Implications for secondary autoimmunity of alemtuzumab in multiple sclerosis. von Kutzleben S; Pryce G; Giovannoni G; Baker D Immunology; 2017 Apr; 150(4):444-455. PubMed ID: 27925187 [TBL] [Abstract][Full Text] [Related]
20. Peripheral blood CD4+ T lymphocytes from multiple sclerosis patients are characterized by higher PSGL-1 expression and transmigration capacity across a human blood-brain barrier-derived endothelial cell line. Bahbouhi B; Berthelot L; Pettré S; Michel L; Wiertlewski S; Weksler B; Romero IA; Miller F; Couraud PO; Brouard S; Laplaud DA; Soulillou JP J Leukoc Biol; 2009 Nov; 86(5):1049-63. PubMed ID: 19696154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]