These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 35672835)
1. Pharmacological affinity fingerprints derived from bioactivity data for the identification of designer drugs. He K J Cheminform; 2022 Jun; 14(1):35. PubMed ID: 35672835 [TBL] [Abstract][Full Text] [Related]
2. QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping. Škuta C; Cortés-Ciriano I; Dehaen W; Kříž P; van Westen GJP; Tetko IV; Bender A; Svozil D J Cheminform; 2020 May; 12(1):39. PubMed ID: 33431038 [TBL] [Abstract][Full Text] [Related]
3. Filter Feature Selection for Unsupervised Clustering of Designer Drugs Using DFT Simulated IR Spectra Data. He K ACS Omega; 2021 Nov; 6(47):32151-32165. PubMed ID: 34870036 [TBL] [Abstract][Full Text] [Related]
5. A new ChEMBL dataset for the similarity-based target fishing engine FastTargetPred: Annotation of an exhaustive list of linear tetrapeptides. Tanwar S; Auberger P; Gillet G; DiPaola M; Tsaioun K; Villoutreix BO Data Brief; 2022 Jun; 42():108159. PubMed ID: 35496477 [TBL] [Abstract][Full Text] [Related]
6. Classification of HIV-1 Protease Inhibitors by Machine Learning Methods. Li Y; Tian Y; Qin Z; Yan A ACS Omega; 2018 Nov; 3(11):15837-15849. PubMed ID: 30556015 [TBL] [Abstract][Full Text] [Related]
9. Identification of Optimal Machine Learning Algorithms and Molecular Fingerprints for Explainable Toxicity Prediction Models Using ToxCast/Tox21 Bioassay Data. Kim D; Jeong J; Choi J ACS Omega; 2024 Sep; 9(36):37934-37941. PubMed ID: 39281924 [TBL] [Abstract][Full Text] [Related]
10. Computational models for the classification of mPGES-1 inhibitors with fingerprint descriptors. Xia Z; Yan A Mol Divers; 2017 Aug; 21(3):661-675. PubMed ID: 28484935 [TBL] [Abstract][Full Text] [Related]
11. Analysis and Comparison of Vector Space and Metric Space Representations in QSAR Modeling. Kausar S; Falcao AO Molecules; 2019 Apr; 24(9):. PubMed ID: 31052325 [TBL] [Abstract][Full Text] [Related]
12. Exploration of the mechanism of traditional Chinese medicine by AI approach using unsupervised machine learning for cellular functional similarity of compounds in heterogeneous networks, XiaoErFuPi granules as an example. Guo F; Tang X; Zhang W; Wei J; Tang S; Wu H; Yang H Pharmacol Res; 2020 Oct; 160():105077. PubMed ID: 32687952 [TBL] [Abstract][Full Text] [Related]
14. Classification models and SAR analysis on thromboxane A Ji Y; Li R; Tian Y; Chen G; Yan A SAR QSAR Environ Res; 2022 Jun; 33(6):429-462. PubMed ID: 35678125 [TBL] [Abstract][Full Text] [Related]
15. Classification models and SAR analysis on HDAC1 inhibitors using machine learning methods. Li R; Tian Y; Yang Z; Ji Y; Ding J; Yan A Mol Divers; 2023 Jun; 27(3):1037-1051. PubMed ID: 35737257 [TBL] [Abstract][Full Text] [Related]
16. MOST: most-similar ligand based approach to target prediction. Huang T; Mi H; Lin CY; Zhao L; Zhong LL; Liu FB; Zhang G; Lu AP; Bian ZX; BMC Bioinformatics; 2017 Mar; 18(1):165. PubMed ID: 28284192 [TBL] [Abstract][Full Text] [Related]
17. Exploring the role of Yuxuebi tablet in neuropathic pain with the method of similarity research of drug pharmacological effects based on unsupervised machine learning. Du X; Zhao C; Xi Y; Lin P; Liu H; Wang S; Guo F Front Pharmacol; 2024; 15():1440542. PubMed ID: 39355777 [TBL] [Abstract][Full Text] [Related]