These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 35672857)

  • 41. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface.
    Su Y; Routhu S; Moon KS; Lee SQ; Youm W; Ozturk Y
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27669264
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
    Meng C; Gall OZ; Irazoqui PP
    Biomed Microdevices; 2013 Dec; 15(6):973-83. PubMed ID: 23832644
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultra-low frequency magnetic energy focusing for highly effective wireless powering of deep-tissue implantable electronic devices.
    Li Y; Chen Z; Liu Y; Liu Z; Wu T; Zhang Y; Peng L; Huang X; Huang S; Lin X; Xie X; Jiang L
    Natl Sci Rev; 2024 May; 11(5):nwae062. PubMed ID: 38628571
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wireless Power Transmission with Uniform Power Delivery in the 3D Space of the Human Body using Resonators in Parallel.
    Saha R; Roy Joy B; Mirbozorgi SA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7268-7271. PubMed ID: 34892776
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical power transfer and communication methods for wireless implantable sensing platforms.
    Mujeeb-U-Rahman M; Adalian D; Chang CF; Scherer A
    J Biomed Opt; 2015 Sep; 20(9):095012. PubMed ID: 26405820
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation.
    Wang Q; Zhang Y; Xue H; Zeng Y; Lu G; Fan H; Jiang L; Wu J
    Nat Commun; 2024 May; 15(1):4017. PubMed ID: 38740759
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A fully implantable wireless bidirectional neuromodulation system for mice.
    Wright JP; Mughrabi IT; Wong J; Mathew J; Jayaprakash N; Crosfield C; Chang EH; Chavan SS; Tracey KJ; Pavlov VA; Al-Abed Y; Zanos TP; Zanos S; Datta-Chaudhuri T
    Biosens Bioelectron; 2022 Mar; 200():113886. PubMed ID: 34995836
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A distributed, high-channel-count, implanted bidirectional system for restoration of somatosensation and myoelectric control.
    Lambrecht JM; Cady SR; Peterson EJ; Dunning JL; Dinsmoor DA; Pape F; Graczyk EL; Tyler DJ
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38861967
    [No Abstract]   [Full Text] [Related]  

  • 49. Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.
    Bocan KN; Sejdić E
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999154
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the Design of an Efficient Inductive Wireless Power Transfer for Passive Neurostimulation Systems.
    Machnoor M; Shao X; Paknahad J; Humayun M; Lazzi G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7497-7501. PubMed ID: 34892827
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interventional placement of thin coil shaped implants powered wirelessly for monitoring vital signals and controlling abnormal activities by electro-stimulation.
    Ohta H; Honda M; Takamiya M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3035-3038. PubMed ID: 28268951
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toward a distributed free-floating wireless implantable neural recording system.
    Pyungwoo Yeon ; Xingyuan Tong ; Byunghun Lee ; Mirbozorgi A; Ash B; Eckhardt H; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4495-4498. PubMed ID: 28269276
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wireless powering and data telemetry for biomedical implants.
    Young DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3221-4. PubMed ID: 19964060
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Potential of Wake-Up Radio-Based MAC Protocols for Implantable Body Sensor Networks (IBSN)-A Survey.
    Karuppiah Ramachandran VR; Ayele ED; Meratnia N; Havinga PJ
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27916822
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems.
    Cutrone A; Micera S
    Adv Healthc Mater; 2019 Dec; 8(24):e1801345. PubMed ID: 31763784
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.
    Eom K; Jeong J; Lee TH; Lee SE; Jun SB; Kim SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1859-62. PubMed ID: 24110073
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication.
    Piech DK; Johnson BC; Shen K; Ghanbari MM; Li KY; Neely RM; Kay JE; Carmena JM; Maharbiz MM; Muller R
    Nat Biomed Eng; 2020 Feb; 4(2):207-222. PubMed ID: 32076132
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wireless energizing system for an automated implantable sensor.
    Swain B; Nayak PP; Kar DP; Bhuyan S; Mishra LP
    Rev Sci Instrum; 2016 Jul; 87(7):074708. PubMed ID: 27475582
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of simple wireless neurostimulators and sensors.
    Gulick DW; Towe BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3130-3. PubMed ID: 25570654
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low-power polling mode of the next-generation IMES2 implantable wireless EMG sensor.
    DeMichele GA; Hu Z; Troyk PR; Chen H; Weir RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3081-4. PubMed ID: 25570642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.