BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35672947)

  • 1. Functional analysis of the N-terminal region of Vibrio FlhG, a MinD-type ATPase in flagellar number control.
    Homma M; Mizuno A; Hao Y; Kojima S
    J Biochem; 2022 Jul; 172(2):99-107. PubMed ID: 35672947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function and Structure of FlaK, a Master Regulator of the Polar Flagellar Genes in Marine
    Homma M; Kobayakawa T; Hao Y; Nishikino T; Kojima S
    J Bacteriol; 2022 Nov; 204(11):e0032022. PubMed ID: 36314831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The MinD homolog FlhG regulates the synthesis of the single polar flagellum of Vibrio alginolyticus.
    Ono H; Takashima A; Hirata H; Homma M; Kojima S
    Mol Microbiol; 2015 Oct; 98(1):130-41. PubMed ID: 26112286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of multiple flagella caused by a mutation of the flagellar rotor protein FliM in Vibrio alginolyticus.
    Homma M; Takekawa N; Fujiwara K; Hao Y; Onoue Y; Kojima S
    Genes Cells; 2022 Sep; 27(9):568-578. PubMed ID: 35842835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus.
    Kusumoto A; Kamisaka K; Yakushi T; Terashima H; Shinohara A; Homma M
    J Biochem; 2006 Jan; 139(1):113-21. PubMed ID: 16428326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HubP, a Polar Landmark Protein, Regulates Flagellar Number by Assisting in the Proper Polar Localization of FlhG in Vibrio alginolyticus.
    Takekawa N; Kwon S; Nishioka N; Kojima S; Homma M
    J Bacteriol; 2016 Nov; 198(22):3091-3098. PubMed ID: 27573015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of the GTP-binding motif of FlhF which regulates the number and placement of the polar flagellum in Vibrio alginolyticus.
    Kusumoto A; Nishioka N; Kojima S; Homma M
    J Biochem; 2009 Nov; 146(5):643-50. PubMed ID: 19605463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus.
    Kusumoto A; Shinohara A; Terashima H; Kojima S; Yakushi T; Homma M
    Microbiology (Reading); 2008 May; 154(Pt 5):1390-1399. PubMed ID: 18451048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the MinD/ParA-type ATPase FlhG in Vibrio alginolyticus and implications for function of its monomeric form.
    Kojima S; Imura Y; Hirata H; Homma M
    Genes Cells; 2020 Apr; 25(4):279-287. PubMed ID: 32012412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy.
    Correa NE; Peng F; Klose KE
    J Bacteriol; 2005 Sep; 187(18):6324-32. PubMed ID: 16159765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the Single Polar Flagellar Biogenesis.
    Kojima S; Terashima H; Homma M
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32244780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization and domain characterization of the SflA regulator of flagellar formation in Vibrio alginolyticus.
    Inaba S; Nishigaki T; Takekawa N; Kojima S; Homma M
    Genes Cells; 2017 Jul; 22(7):619-627. PubMed ID: 28544270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FlhG employs diverse intrinsic domains and influences FlhF GTPase activity to numerically regulate polar flagellar biogenesis in Campylobacter jejuni.
    Gulbronson CJ; Ribardo DA; Balaban M; Knauer C; Bange G; Hendrixson DR
    Mol Microbiol; 2016 Jan; 99(2):291-306. PubMed ID: 26411371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of mono-polar to peritrichous flagellation in Vibrio alginolyticus.
    Kojima M; Nishioka N; Kusumoto A; Yagasaki J; Fukuda T; Homma M
    Microbiol Immunol; 2011 Feb; 55(2):76-83. PubMed ID: 21204943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of FlhF, SRP-like GTPase with FliF, MS ring component assembling the initial structure of flagella in marine Vibrio.
    Fukushima Y; Homma M; Kojima S
    J Biochem; 2023 Jul; 174(2):125-130. PubMed ID: 37021788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical analysis of GTPase FlhF which controls the number and position of flagellar formation in marine Vibrio.
    Kondo S; Imura Y; Mizuno A; Homma M; Kojima S
    Sci Rep; 2018 Aug; 8(1):12115. PubMed ID: 30108243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Polar Flagellar Transcriptional Program Mediated by Diverse Two-Component Signal Transduction Systems and Basal Flagellar Proteins Is Broadly Conserved in Polar Flagellates.
    Burnham PM; Kolar WP; Hendrixson DR
    mBio; 2020 Mar; 11(2):. PubMed ID: 32127455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the flagellation pattern in
    Gibson KH; Botting JM; Al-Otaibi N; Maitre K; Bergeron J; Starai VJ; Hoover TR
    J Bacteriol; 2023 Sep; 205(9):e0011023. PubMed ID: 37655916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the major determinant of polar flagellation FlhG in the endoflagella-containing spirochete Leptospira.
    Fule L; Halifa R; Fontana C; Sismeiro O; Legendre R; Varet H; Coppée JY; Murray GL; Adler B; Hendrixson DR; Buschiazzo A; Guo S; Liu J; Picardeau M
    Mol Microbiol; 2021 Nov; 116(5):1392-1406. PubMed ID: 34657338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ATP-dependent partner switch links flagellar C-ring assembly with gene expression.
    Blagotinsek V; Schwan M; Steinchen W; Mrusek D; Hook JC; Rossmann F; Freibert SA; Kratzat H; Murat G; Kressler D; Beckmann R; Beeby M; Thormann KM; Bange G
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20826-20835. PubMed ID: 32788349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.