These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 35673121)
1. Extraction of Medication-Effect Relations in Twitter Data with Neural Embedding and Recurrent Neural Network. Jiang K; Zhang D; Bernard GR Stud Health Technol Inform; 2022 Jun; 290():767-771. PubMed ID: 35673121 [TBL] [Abstract][Full Text] [Related]
3. Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts. Cocos A; Fiks AG; Masino AJ J Am Med Inform Assoc; 2017 Jul; 24(4):813-821. PubMed ID: 28339747 [TBL] [Abstract][Full Text] [Related]
4. Deep neural networks ensemble for detecting medication mentions in tweets. Weissenbacher D; Sarker A; Klein A; O'Connor K; Magge A; Gonzalez-Hernandez G J Am Med Inform Assoc; 2019 Dec; 26(12):1618-1626. PubMed ID: 31562510 [TBL] [Abstract][Full Text] [Related]
5. Identifying health related occupations of Twitter users through word embedding and deep neural networks. Zainab K; Srivastava G; Mago V BMC Bioinformatics; 2022 Sep; 22(Suppl 10):630. PubMed ID: 36171569 [TBL] [Abstract][Full Text] [Related]
6. Reply to comment on: "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts". Cocos A; Fiks AG; Masino AJ J Am Med Inform Assoc; 2019 Jun; 26(6):580-581. PubMed ID: 30980667 [TBL] [Abstract][Full Text] [Related]
7. Identifying tweets of personal health experience through word embedding and LSTM neural network. Jiang K; Feng S; Song Q; Calix RA; Gupta M; Bernard GR BMC Bioinformatics; 2018 Jun; 19(Suppl 8):210. PubMed ID: 29897323 [TBL] [Abstract][Full Text] [Related]
8. Comment on: "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts". Magge A; Sarker A; Nikfarjam A; Gonzalez-Hernandez G J Am Med Inform Assoc; 2019 Jun; 26(6):577-579. PubMed ID: 31087070 [No Abstract] [Full Text] [Related]
9. An adverse drug effect mentions extraction method based on weighted online recurrent extreme learning machine. El-Allaly ED; Sarrouti M; En-Nahnahi N; Ouatik El Alaoui S Comput Methods Programs Biomed; 2019 Jul; 176():33-41. PubMed ID: 31200909 [TBL] [Abstract][Full Text] [Related]
10. DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter. Magge A; Tutubalina E; Miftahutdinov Z; Alimova I; Dirkson A; Verberne S; Weissenbacher D; Gonzalez-Hernandez G J Am Med Inform Assoc; 2021 Sep; 28(10):2184-2192. PubMed ID: 34270701 [TBL] [Abstract][Full Text] [Related]
11. Data and systems for medication-related text classification and concept normalization from Twitter: insights from the Social Media Mining for Health (SMM4H)-2017 shared task. Sarker A; Belousov M; Friedrichs J; Hakala K; Kiritchenko S; Mehryary F; Han S; Tran T; Rios A; Kavuluru R; de Bruijn B; Ginter F; Mahata D; Mohammad SM; Nenadic G; Gonzalez-Hernandez G J Am Med Inform Assoc; 2018 Oct; 25(10):1274-1283. PubMed ID: 30272184 [TBL] [Abstract][Full Text] [Related]
12. Ontology-Based Healthcare Named Entity Recognition from Twitter Messages Using a Recurrent Neural Network Approach. Batbaatar E; Ryu KH Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31569654 [TBL] [Abstract][Full Text] [Related]
13. Adversarial neural network with sentiment-aware attention for detecting adverse drug reactions. Zhang T; Lin H; Xu B; Yang L; Wang J; Duan X J Biomed Inform; 2021 Nov; 123():103896. PubMed ID: 34487887 [TBL] [Abstract][Full Text] [Related]
14. Classifying adverse drug reactions from imbalanced twitter data. Dai HJ; Wang CK Int J Med Inform; 2019 Sep; 129():122-132. PubMed ID: 31445246 [TBL] [Abstract][Full Text] [Related]
15. Hybrid Semantic Analysis for Mapping Adverse Drug Reaction Mentions in Tweets to Medical Terminology. Emadzadeh E; Sarker A; Nikfarjam A; Gonzalez G AMIA Annu Symp Proc; 2017; 2017():679-688. PubMed ID: 29854133 [TBL] [Abstract][Full Text] [Related]
16. Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams. Eshleman R; Singh R BMC Bioinformatics; 2016 Oct; 17(Suppl 13):335. PubMed ID: 27766937 [TBL] [Abstract][Full Text] [Related]
17. Pharmacovigilance with Transformers: A Framework to Detect Adverse Drug Reactions Using BERT Fine-Tuned with FARM. Hussain S; Afzal H; Saeed R; Iltaf N; Umair MY Comput Math Methods Med; 2021; 2021():5589829. PubMed ID: 34422092 [TBL] [Abstract][Full Text] [Related]
18. Identifying relations of medications with adverse drug events using recurrent convolutional neural networks and gradient boosting. Yang X; Bian J; Fang R; Bjarnadottir RI; Hogan WR; Wu Y J Am Med Inform Assoc; 2020 Jan; 27(1):65-72. PubMed ID: 31504605 [TBL] [Abstract][Full Text] [Related]
19. Evaluating Twitter as a complementary data source for pharmacovigilance. Lardon J; Bellet F; Aboukhamis R; Asfari H; Souvignet J; Jaulent MC; Beyens MN; Lillo-LeLouët A; Bousquet C Expert Opin Drug Saf; 2018 Aug; 17(8):763-774. PubMed ID: 29991282 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts. Korkontzelos I; Nikfarjam A; Shardlow M; Sarker A; Ananiadou S; Gonzalez GH J Biomed Inform; 2016 Aug; 62():148-58. PubMed ID: 27363901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]