These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 3567322)

  • 1. Structural models for the N- and C-terminal telopeptide regions of interstitial collagens.
    Jones EY; Miller A
    Biopolymers; 1987 Apr; 26(4):463-80. PubMed ID: 3567322
    [No Abstract]   [Full Text] [Related]  

  • 2. Structure of the type I collagen molecule based on conformational energy computations: the triple-stranded helix and the N-terminal telopeptide.
    Vitagliano L; NĂ©methy G; Zagari A; Scheraga HA
    J Mol Biol; 1995 Mar; 247(1):69-80. PubMed ID: 7897661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type I collagen N-telopeptides adopt an ordered structure when docked to their helix receptor during fibrillogenesis.
    Malone JP; George A; Veis A
    Proteins; 2004 Feb; 54(2):206-15. PubMed ID: 14696182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterotrimeric type I collagen C-telopeptide conformation as docked to its helix receptor.
    Malone JP; Veis A
    Biochemistry; 2004 Dec; 43(49):15358-66. PubMed ID: 15581348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysyl hydroxylase 2 is a specific telopeptide hydroxylase, while all three isoenzymes hydroxylate collagenous sequences.
    Takaluoma K; Lantto J; Myllyharju J
    Matrix Biol; 2007 Jun; 26(5):396-403. PubMed ID: 17289364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of models for the macromolecular structure of interstitial and basement membrane collagens.
    Glanville RW
    Arzneimittelforschung; 1982; 32(10a):1353-7. PubMed ID: 6891238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for type II collagen fibrils: distinctive D-band patterns in native and reconstituted fibrils compared with sequence data for helix and telopeptide domains.
    Ortolani F; Giordano M; Marchini M
    Biopolymers; 2000 Nov; 54(6):448-63. PubMed ID: 10951330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural comparison of cuticle and interstitial collagens from annelids living in shallow sea-water and at deep-sea hydrothermal vents.
    Gaill F; Mann K; Wiedemann H; Engel J; Timpl R
    J Mol Biol; 1995 Feb; 246(2):284-94. PubMed ID: 7869380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A type X collagen mutation causes Schmid metaphyseal chondrodysplasia.
    Warman ML; Abbott M; Apte SS; Hefferon T; McIntosh I; Cohn DH; Hecht JT; Olsen BR; Francomano CA
    Nat Genet; 1993 Sep; 5(1):79-82. PubMed ID: 8220429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetic resonance shows asymmetric loss of triple helix in peptides modeling a collagen mutation in brittle bone disease.
    Liu X; Kim S; Dai QH; Brodsky B; Baum J
    Biochemistry; 1998 Nov; 37(44):15528-33. PubMed ID: 9799516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparative x-ray study of the species specificity of collagens].
    Grigolava MV; Kiknadze KA; Rogulenkova VN; Esipova NG
    Biofizika; 1980; 25(5):914-8. PubMed ID: 6968227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of the collagen-like tail of asymmetric acetylcholinesterase with heparin depends on triple-helical conformation, sequence and stability.
    Deprez P; Doss-Pepe E; Brodsky B; Inestrosa NC
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):283-90. PubMed ID: 10926855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations in collagen fibril structure in tendons.
    Brodsky B; Eikenberry EF; Belbruno KC; Sterling K
    Biopolymers; 1982 May; 21(5):935-51. PubMed ID: 7082771
    [No Abstract]   [Full Text] [Related]  

  • 14. N-telopeptide of type II collagen interacts with annexin V on human chondrocytes.
    Lucic D; Mollenhauer J; Kilpatrick KE; Cole AA
    Connect Tissue Res; 2003; 44(5):225-39. PubMed ID: 14660093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Metabolism of collagen (author's transl)].
    Nagai Y
    Ryumachi; 1980 Sep; 20(4):286-97. PubMed ID: 7003759
    [No Abstract]   [Full Text] [Related]  

  • 16. Osteogenesis imperfecta collagen-like peptides: self-assembly and mineralization on surfaces.
    Xu P; Huang J; Cebe P; Kaplan DL
    Biomacromolecules; 2008 Jun; 9(6):1551-7. PubMed ID: 18498187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarity in structure between C1q and the collectins as judged by electron microscopy.
    Lu J; Wiedemann H; Timpl R; Reid KB
    Behring Inst Mitt; 1993 Dec; (93):6-16. PubMed ID: 8172586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The collagen superfamily: from the extracellular matrix to the cell membrane.
    Ricard-Blum S; Ruggiero F
    Pathol Biol (Paris); 2005 Sep; 53(7):430-42. PubMed ID: 16085121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences.
    Maurer-Stroh S; Eisenhaber B; Eisenhaber F
    J Mol Biol; 2002 Apr; 317(4):523-40. PubMed ID: 11955007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides.
    Ramshaw JA; Shah NK; Brodsky B
    J Struct Biol; 1998; 122(1-2):86-91. PubMed ID: 9724608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.