These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 3567328)

  • 1. The hydrogen bonding of cytosine with guanine: calorimetric and 1H-nmr analysis of the molecular interactions of nucleic acid bases.
    Williams LD; Chawla B; Shaw BR
    Biopolymers; 1987 Apr; 26(4):591-603. PubMed ID: 3567328
    [No Abstract]   [Full Text] [Related]  

  • 2. Solution structure of an intramolecular DNA triplex containing an N7-glycosylated guanine which mimics a protonated cytosine.
    Koshlap KM; Schultze P; Brunar H; Dervan PB; Feigon J
    Biochemistry; 1997 Mar; 36(9):2659-68. PubMed ID: 9054573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Duplex to quadruplex equilibrium of the self-complementary oligonucleotide d(GGGGCCCC).
    Deng H; Braunlin WH
    Biopolymers; 1995 Jun; 35(6):677-81. PubMed ID: 7766832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of nucleic-acid base-pairs with acidic side chains of protein. Crystal structures of adenine: 1-(2-carboxyethyl)uracil (1:1) complex and 1-methylcytosine: 9-(2-carboxyethyl)guanine (1:1) complex.
    Takenaka A; Fujita S; Sasada Y
    Nucleic Acids Symp Ser; 1982; (11):281-4. PubMed ID: 7183967
    [No Abstract]   [Full Text] [Related]  

  • 5. The small planarization barriers for the amino group in the nucleic acid bases.
    Wang S; Schaefer HF
    J Chem Phys; 2006 Jan; 124(4):044303. PubMed ID: 16460158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity in DNA interactions: an nmr investigation of the interaction of propidium with oligodeoxyribonucleotides containing normal and G-T base pairs.
    Wilson WD; Jones RL; Zon G; Banville DL; Marzilli LG
    Biopolymers; 1986 Oct; 25(10):1997-2015. PubMed ID: 3779018
    [No Abstract]   [Full Text] [Related]  

  • 8. H-bonding patterns in the platinated guanine-cytosine base pair and guanine-cytosine-guanine-cytosine base tetrad: an electron density deformation analysis and AIM study.
    Gu J; Wang J; Leszczynski J
    J Am Chem Soc; 2004 Oct; 126(39):12651-60. PubMed ID: 15453799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab-initio quantum mechanical calculations of NMR chemical shifts in nucleic acid constituents. I. The Watson-Crick base pairs.
    Giessner-Prettre C
    J Biomol Struct Dyn; 1984 Aug; 2(1):233-48. PubMed ID: 6400932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure of an O6-[4-oxo-4-(3-pyridyl)butyl]guanine adduct in an 11 mer DNA duplex: evidence for formation of a base triplex.
    Peterson LA; Vu C; Hingerty BE; Broyde S; Cosman M
    Biochemistry; 2003 Nov; 42(45):13134-44. PubMed ID: 14609323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR study of the conformation of the 2-aminopurine:cytosine mismatch in DNA.
    Fagan PA; Fàbrega C; Eritja R; Goodman MF; Wemmer DE
    Biochemistry; 1996 Apr; 35(13):4026-33. PubMed ID: 8672436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies of DNA and RNA containing AG base pairs by NMR.
    Katahira M; Sato H; Sugiyama T; Kanagawa M; Mishima K; Uesugi S
    Nucleic Acids Symp Ser; 1993; (29):203-4. PubMed ID: 7504245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methoxyamine attack on cytosine produces ambivalent base pairing properties of the modified base.
    Gdaniec Z; Sowers LC; Fazakerley GV
    Acta Biochim Pol; 1996; 43(1):95-105. PubMed ID: 8790715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis for methoxyamine-initiated mutagenesis: 1H nuclear magnetic resonance studies of oligonucleotide duplexes containing base-modified cytosine residues.
    Nedderman AN; Stone MJ; Williams DH; Lin PK; Brown DM
    J Mol Biol; 1993 Apr; 230(3):1068-76. PubMed ID: 8478918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of structural water in the formation of nucleotide mispairs.
    Poltev VI; Steinberg SV
    J Biomol Struct Dyn; 1987 Oct; 5(2):307-12. PubMed ID: 3271476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise analyses of DNA structure by NMR.
    Kojima C; Kyogoku Y; Ishido Y; Kawashima E; Sekine T; Hirao I; Kainosho M
    Nucleic Acids Symp Ser; 1993; (29):185-6. PubMed ID: 8247761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution structure of an oligodeoxynucleotide containing the human N-ras codon 12 sequence refined from 1H NMR using molecular dynamics restrained by nuclear Overhauser effects.
    Zegar IS; Stone MP
    Chem Res Toxicol; 1996; 9(1):114-25. PubMed ID: 8924579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel-stranded duplexes and quartet assemblies formed by oligonucleotides containing isoguanine.
    Seela F; Wei C; Melenewski A; Leonard P
    Nucleic Acids Symp Ser; 1997; (37):149-50. PubMed ID: 9586043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tetrameric DNA structure with protonated cytosine.cytosine base pairs.
    Gehring K; Leroy JL; Guéron M
    Nature; 1993 Jun; 363(6429):561-5. PubMed ID: 8389423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel DNA double helices incorporating isoG or m5isoC bases studied by FTIR, CD and molecular modeling.
    Geinguenaud F; Mondragon-Sanchez JA; Liquier J; Shchyolkina AK; Klement R; Arndt-Jovin DJ; Jovin TM; Taillandier E
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb; 61(4):579-87. PubMed ID: 15649787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.