BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 35674114)

  • 1. Infiltration from Suspension Systems Enables Effective Modulation of 3D Scaffold Properties in Suspension Bioprinting.
    Wang C; Honiball JR; Lin J; Xia X; Lau DSA; Chen B; Deng L; Lu WW
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27575-27588. PubMed ID: 35674114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR; Postma A; Frith JE; Meagher L
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments.
    Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS
    Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink.
    Liu Q; Yang J; Wang Y; Wu T; Liang Y; Deng K; Luan G; Chen Y; Huang Z; Yue K
    Biomacromolecules; 2023 Jun; 24(6):2549-2562. PubMed ID: 37115848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds.
    Yang J; Li Z; Li S; Zhang Q; Zhou X; He C
    Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks.
    Liu W; Heinrich MA; Zhou Y; Akpek A; Hu N; Liu X; Guan X; Zhong Z; Jin X; Khademhosseini A; Zhang YS
    Adv Healthc Mater; 2017 Jun; 6(12):. PubMed ID: 28464555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tomographic volumetric bioprinting of heterocellular bone-like tissues in seconds.
    Gehlen J; Qiu W; Schädli GN; Müller R; Qin XH
    Acta Biomater; 2023 Jan; 156():49-60. PubMed ID: 35718102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting.
    Bilici Ç; Tatar AG; Şentürk E; Dikyol C; Koç B
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing.
    Cheng QP; Hsu SH
    Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair.
    Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F
    Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs.
    Zhang X; Kim GJ; Kang MG; Lee JK; Seo JW; Do JT; Hong K; Cha JM; Shin SR; Bae H
    Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30518062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Template-Enabled Biofabrication of Thick 3D Tissues with Patterned Perfusable Macrochannels.
    Davoodi E; Montazerian H; Zhianmanesh M; Abbasgholizadeh R; Haghniaz R; Baidya A; Pourmohammadali H; Annabi N; Weiss PS; Toyserkani E; Khademhosseini A
    Adv Healthc Mater; 2022 Apr; 11(7):e2102123. PubMed ID: 34967148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications.
    Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS
    Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Printing GelMA bioinks: a strategy for building
    Fu Z; Hai N; Zhong Y; Sun W
    Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38447206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks.
    Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printing of Microgel Scaffolds with Tunable Void Fraction to Promote Cell Infiltration.
    Seymour AJ; Shin S; Heilshorn SC
    Adv Healthc Mater; 2021 Sep; 10(18):e2100644. PubMed ID: 34342179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.