These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 35674145)

  • 1. Microfluidic Systems For Manufacturing of Microparticle-Based Drug-Delivery Systems: Design, Construction, and Operation.
    Yonet-Tanyeri N; Amer M; Balmert SC; Korkmaz E; Falo LD; Little SR
    ACS Biomater Sci Eng; 2022 Jul; 8(7):2864-2877. PubMed ID: 35674145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery.
    Xu Q; Hashimoto M; Dang TT; Hoare T; Kohane DS; Whitesides GM; Langer R; Anderson DG
    Small; 2009 Jul; 5(13):1575-81. PubMed ID: 19296563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics in drug delivery: review of methods and applications.
    Rawas-Qalaji M; Cagliani R; Al-Hashimi N; Al-Dabbagh R; Al-Dabbagh A; Hussain Z
    Pharm Dev Technol; 2023 Jan; 28(1):61-77. PubMed ID: 36592376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Synthesis of Indomethacin-Loaded PLGA Microparticles Optimized by Machine Learning.
    Damiati SA; Damiati S
    Front Mol Biosci; 2021; 8():677547. PubMed ID: 34631792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.
    Keohane K; Brennan D; Galvin P; Griffin BT
    Int J Pharm; 2014 Jun; 467(1-2):60-9. PubMed ID: 24680950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concepts for efficient preparation of particulate polymer carrier systems by droplet-based microfluidics.
    Wischke C
    Int J Pharm; 2020 Jun; 584():119401. PubMed ID: 32387311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidics-assisted in vitro drug screening and carrier production.
    Tsui JH; Lee W; Pun SH; Kim J; Kim DH
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1575-88. PubMed ID: 23856409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and opportunities.
    Mehraji S; DeVoe DL
    Lab Chip; 2024 Feb; 24(5):1154-1174. PubMed ID: 38165786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Platforms toward Rational Material Fabrication for Biomedical Applications.
    Zhao Q; Cui H; Wang Y; Du X
    Small; 2020 Mar; 16(9):e1903798. PubMed ID: 31650698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable Production of Biomedical Microparticles via High-Throughput Microfluidic Step Emulsification.
    Zheng Y; Chen H; Lin X; Li M; Zhao Y; Shang L
    Small; 2023 Apr; 19(17):e2206007. PubMed ID: 36725312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Fabrication of Natural Polymer-Based Scaffolds for Tissue Engineering Applications: A Review.
    Rosellini E; Cascone MG
    Biomimetics (Basel); 2023 Feb; 8(1):. PubMed ID: 36810405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Development of Biomimetic Nanovesicles Using a Microfluidic Approach.
    Molinaro R; Evangelopoulos M; Hoffman JR; Corbo C; Taraballi F; Martinez JO; Hartman KA; Cosco D; Costa G; Romeo I; Sherman M; Paolino D; Alcaro S; Tasciotti E
    Adv Mater; 2018 Apr; 30(15):e1702749. PubMed ID: 29512198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery.
    Zhao CX
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1420-46. PubMed ID: 23770061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems.
    Martins JP; Torrieri G; Santos HA
    Expert Opin Drug Deliv; 2018 May; 15(5):469-479. PubMed ID: 29508630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine.
    Ejeta F
    Drug Des Devel Ther; 2021; 15():3881-3891. PubMed ID: 34531650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of nanoparticle drug delivery systems with microfluidics tools.
    Khan IU; Serra CA; Anton N; Vandamme TF
    Expert Opin Drug Deliv; 2015 Apr; 12(4):547-62. PubMed ID: 25345543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic assisted synthesis of PLGA drug delivery systems.
    Rezvantalab S; Keshavarz Moraveji M
    RSC Adv; 2019 Jan; 9(4):2055-2072. PubMed ID: 35516107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy.
    Fabozzi A; Della Sala F; di Gennaro M; Barretta M; Longobardo G; Solimando N; Pagliuca M; Borzacchiello A
    Lab Chip; 2023 Mar; 23(5):1389-1409. PubMed ID: 36647782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles.
    Li X; Jiang X
    Adv Drug Deliv Rev; 2018 Mar; 128():101-114. PubMed ID: 29277543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translating the fabrication of protein-loaded poly(lactic-co-glycolic acid) nanoparticles from bench to scale-independent production using microfluidics.
    Roces CB; Christensen D; Perrie Y
    Drug Deliv Transl Res; 2020 Jun; 10(3):582-593. PubMed ID: 31919746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.