These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3567470)

  • 1. Reproducibility of spin lattice relaxation time (T1) measurement using an 0.08 tesla MD 800 magnetic resonance imager.
    Richards MA; Gregory WM; Webb JA; Jewell SE; Reznek RH
    Br J Radiol; 1987 Mar; 60(711):241-4. PubMed ID: 3567470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methodology for the measurement and analysis of relaxation times in proton imaging.
    MacFall JR; Wehrli FW; Breger RK; Johnson GA
    Magn Reson Imaging; 1987; 5(3):209-20. PubMed ID: 3041152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal strength on a 0.15-T magnetic resonance imager.
    Hardy PA; Bronskill MJ; Henkelman RM
    Med Phys; 1985; 12(5):581-5. PubMed ID: 2995779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of relaxation time measurements by magnetic resonance imaging. A phantom study.
    Kjaer L; Thomsen C; Henriksen O; Ring P; Stubgaard M; Pedersen EJ
    Acta Radiol; 1987; 28(3):345-51. PubMed ID: 2958044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin-lattice relaxation and a fast T1-map acquisition method in MRI with transient-state magnetization.
    Hsu JJ; Lowe IJ
    J Magn Reson; 2004 Aug; 169(2):270-8. PubMed ID: 15261622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The direct measurement of the spin-grid-relaxation times of phosphorus metabolites in the human myocardium].
    Schindler R; Krahe T; Neubauer S; Hillenbrand H; Entzeroth C; Horn M; Lackner K; Ertl G
    Rofo; 1992 Nov; 157(5):452-7. PubMed ID: 1421185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of different pulse sequences for in vivo determination of T1 relaxation times in the human brain.
    Kjaer L; Henriksen O
    Acta Radiol; 1988; 29(2):231-6. PubMed ID: 2965910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependence of proton relaxation times in vitro.
    Nelson TR; Tung SM
    Magn Reson Imaging; 1987; 5(3):189-99. PubMed ID: 3041151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproducibility of T1 and T2 relaxation times calculated from routine MR imaging sequences: phantom study.
    Kjos BO; Ehman RL; Brant-Zawadzki M
    AJR Am J Roentgenol; 1985 Jun; 144(6):1157-63. PubMed ID: 2988317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy and precision in the measurement of relaxation times from nuclear magnetic resonance images.
    Johnson G; Ormerod IE; Barnes D; Tofts PS; MacManus D
    Br J Radiol; 1987 Feb; 60(710):143-53. PubMed ID: 3815010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T
    Martínez-Santiesteban FM; Dang TP; Lim H; Chen AP; Scholl TJ
    NMR Biomed; 2017 Sep; 30(9):. PubMed ID: 28653507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance imaging system stability: temporal variability in signal intensity, signal-to-noise, T1, and T2 measurements on a 0.15-T resistive system.
    Slone RM; Fitzsimmons JR
    Med Phys; 1987; 14(1):131-4. PubMed ID: 3561333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage.
    Welsch GH; Mamisch TC; Hughes T; Zilkens C; Quirbach S; Scheffler K; Kraff O; Schweitzer ME; Szomolanyi P; Trattnig S
    Invest Radiol; 2008 Sep; 43(9):619-26. PubMed ID: 18708855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methemoglobin suppression in a 0.3 Tesla magnet: an in vitro and in vivo study.
    Pang KK; Tsai YS; Chang HC; Hsu KN
    Acad Radiol; 2010 May; 17(5):624-7. PubMed ID: 20380979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative magnetic resonance methods for in vivo investigation of the human liver and spleen. Technical aspects and preliminary clinical results.
    Thomsen C
    Acta Radiol Suppl; 1996; 401():1-34. PubMed ID: 8604619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin lattice relaxation time measurements in two-dimensional nuclear magnetic resonance imaging: corrections for plane selection and pulse sequence.
    Rosen BR; Pykett IL; Brady TJ
    J Comput Assist Tomogr; 1984 Apr; 8(2):195-9. PubMed ID: 6323554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of the phosphocreatine T1 time constant using a clinical NMR scanner.
    Cettolo V; Piorico C; Attinà C; Francescato MP
    Radiol Med; 2006 Apr; 111(3):420-31. PubMed ID: 16683087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for the clinical measurement of relaxation times in magnetic resonance imaging.
    Hickey DS; Checkley D; Aspden RM; Naughton A; Jenkins JP; Isherwood I
    Br J Radiol; 1986 Jun; 59(702):565-76. PubMed ID: 3708265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of changes in tissue temperature using MR imaging.
    Dickinson RJ; Hall AS; Hind AJ; Young IR
    J Comput Assist Tomogr; 1986; 10(3):468-72. PubMed ID: 3700752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency dependence of magnetic resonance spin-lattice relaxation of protons in biological materials.
    Fullerton GD; Cameron IL; Ord VA
    Radiology; 1984 Apr; 151(1):135-8. PubMed ID: 6322223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.