These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35674777)

  • 1. Crosslinker-Free Hyaluronic Acid Aerogels.
    Aguilera-Bulla D; Legay L; Buwalda SJ; Budtova T
    Biomacromolecules; 2022 Jul; 23(7):2838-2845. PubMed ID: 35674777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyaluronic Acid Aerogels Made Via Freeze-Thaw-Induced Gelation.
    Legay L; Budtova T; Buwalda S
    Biomacromolecules; 2023 Oct; 24(10):4502-4509. PubMed ID: 37071924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong, Machinable, and Insulating Chitosan-Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths.
    Guerrero-Alburquerque N; Zhao S; Adilien N; Koebel MM; Lattuada M; Malfait WJ
    ACS Appl Mater Interfaces; 2020 May; 12(19):22037-22049. PubMed ID: 32302092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning bio-aerogel properties for controlling theophylline delivery. Part 1: Pectin aerogels.
    Groult S; Buwalda S; Budtova T
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112148. PubMed ID: 34082959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing dual nano/macroporous starch bioaerogels via emulsion templating and supercritical carbon dioxide drying.
    Alavi F; Ciftci ON
    Carbohydr Polym; 2022 Sep; 292():119607. PubMed ID: 35725150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the properties of porous chitosan: Aerogels and cryogels.
    Chartier C; Buwalda S; Van Den Berghe H; Nottelet B; Budtova T
    Int J Biol Macromol; 2022 Mar; 202():215-223. PubMed ID: 35033531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials.
    Druel L; Bardl R; Vorwerg W; Budtova T
    Biomacromolecules; 2017 Dec; 18(12):4232-4239. PubMed ID: 29068674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of nanoporous aerogels from wheat starch.
    Ubeyitogullari A; Ciftci ON
    Carbohydr Polym; 2016 Aug; 147():125-132. PubMed ID: 27178916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the morphology and properties of starch aerogels and cryogels via starch source and process parameter.
    Zou F; Budtova T
    Carbohydr Polym; 2021 Mar; 255():117344. PubMed ID: 33436187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of a novel double crosslinked chitin aerogel via etherification with high strength.
    Wang J; Chen Z; Naguib HE
    Carbohydr Polym; 2021 Aug; 265():118014. PubMed ID: 33966821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose Aerogel Microparticles via Emulsion-Coagulation Technique.
    Druel L; Kenkel A; Baudron V; Buwalda S; Budtova T
    Biomacromolecules; 2020 May; 21(5):1824-1831. PubMed ID: 32011867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Collagen Aerogel with Relevant Features for Topical Biomedical Applications.
    Batista MP; Schroeter B; Fernández N; Gaspar FB; do Rosário Bronze M; Duarte AR; Gurikov P
    Chempluschem; 2024 Jul; 89(7):e202400122. PubMed ID: 38578430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and Characterization of Cellulose Nanofiber Aerogels Prepared via Two Different Drying Techniques.
    Wang Z; Zhu W; Huang R; Zhang Y; Jia C; Zhao H; Chen W; Xue Y
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33153103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerogels in drug delivery: From design to application.
    García-González CA; Sosnik A; Kalmár J; De Marco I; Erkey C; Concheiro A; Alvarez-Lorenzo C
    J Control Release; 2021 Apr; 332():40-63. PubMed ID: 33600880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, drying process and medical application of polysaccharide-based aerogels.
    El-Naggar ME; Othman SI; Allam AA; Morsy OM
    Int J Biol Macromol; 2020 Feb; 145():1115-1128. PubMed ID: 31678101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creating and exploring carboxymethyl cellulose aerogels as drug delivery devices.
    Yu S; Budtova T
    Carbohydr Polym; 2024 May; 332():121925. PubMed ID: 38431419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superinsulating nanocellulose aerogels: Effect of density and nanofiber alignment.
    Sivaraman D; Siqueira G; Maurya AK; Zhao S; Koebel MM; Nyström G; Lattuada M; Malfait WJ
    Carbohydr Polym; 2022 Sep; 292():119675. PubMed ID: 35725170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels.
    Groult S; Budtova T
    Carbohydr Polym; 2018 Sep; 196():73-81. PubMed ID: 29891326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release Kinetics of Dexamethasone Phosphate from Porous Chitosan: Comparison of Aerogels and Cryogels.
    Chartier C; Buwalda S; Ilochonwu BC; Van Den Berghe H; Bethry A; Vermonden T; Viola M; Nottelet B; Budtova T
    Biomacromolecules; 2023 Oct; 24(10):4494-4501. PubMed ID: 36958008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro digestion of starch and protein aerogels generated from defatted rice bran via supercritical carbon dioxide drying.
    Kaur S; Ubeyitogullari A
    Food Chem; 2024 Oct; 455():139833. PubMed ID: 38833864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.