These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35674810)

  • 1. Fluorofoldamer-Based Salt- and Proton-Rejecting Artificial Water Channels for Ultrafast Water Transport.
    Shen J; Roy A; Joshi H; Samineni L; Ye R; Tu YM; Song W; Skiles M; Kumar M; Aksimentiev A; Zeng H
    Nano Lett; 2022 Jun; 22(12):4831-4838. PubMed ID: 35674810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons.
    Roy A; Shen J; Joshi H; Song W; Tu YM; Chowdhury R; Ye R; Li N; Ren C; Kumar M; Aksimentiev A; Zeng H
    Nat Nanotechnol; 2021 Aug; 16(8):911-917. PubMed ID: 34017100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bis-Alkylureido Imidazole Artificial Water Channels.
    Su DD; Ulrich S; Barboiu M
    Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202306265. PubMed ID: 37438950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Water Channels: Towards Biomimetic Membranes for Desalination.
    Huang LB; Di Vincenzo M; Li Y; Barboiu M
    Chemistry; 2021 Feb; 27(7):2224-2239. PubMed ID: 32914905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Pyridine-Pyridone Foldamer Channels as M2-Like Artificial Proton Channels.
    Shen J; Ye R; Liu Z; Zeng H
    Angew Chem Int Ed Engl; 2022 Jul; 61(28):e202200259. PubMed ID: 35384207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembled Hydrazide-Based Nanochannels: Efficient Water Translocation and Salt Rejection.
    Talukdar P; Mondal A; Mondal D; Sarkar S; Shivpuje U; Mondal J
    Angew Chem Int Ed Engl; 2024 Aug; ():e202415510. PubMed ID: 39158108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals.
    Burykin A; Warshel A
    Biophys J; 2003 Dec; 85(6):3696-706. PubMed ID: 14645061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond Aquaporins: Recent Developments in Artificial Water Channels.
    Song W; Kumar M
    Langmuir; 2022 Aug; 38(30):9085-9091. PubMed ID: 35862878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural determinants of proton blockage in aquaporins.
    Chakrabarti N; Roux B; Pomès R
    J Mol Biol; 2004 Oct; 343(2):493-510. PubMed ID: 15451676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unimolecular Helix-Based Transmembrane Nanochannel with a Smallest Luminal Cavity of 1 Å Expressing High Proton Selectivity and Transport Activity.
    Yan T; Liu S; Xu J; Sun H; Yu S; Liu J
    Nano Lett; 2021 Dec; 21(24):10462-10468. PubMed ID: 34860025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Biomimetic Water Channel: The Constructive Interplay of Interaction Parameters and Hydrophilic Doping Levels.
    Ebrahimi M; Foroutan M
    J Phys Chem B; 2021 Oct; 125(41):11566-11581. PubMed ID: 34615355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt-Excluding Artificial Water Channels Exhibiting Enhanced Dipolar Water and Proton Translocation.
    Licsandru E; Kocsis I; Shen YX; Murail S; Legrand YM; van der Lee A; Tsai D; Baaden M; Kumar M; Barboiu M
    J Am Chem Soc; 2016 Apr; 138(16):5403-9. PubMed ID: 27063409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectivity and transport in aquaporins from molecular simulation studies.
    Padhi S; Priyakumar UD
    Vitam Horm; 2020; 112():47-70. PubMed ID: 32061349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis of proton blockage in aquaporins.
    Chakrabarti N; Tajkhorshid E; Roux B; Pomès R
    Structure; 2004 Jan; 12(1):65-74. PubMed ID: 14725766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays.
    Shen YX; Si W; Erbakan M; Decker K; De Zorzi R; Saboe PO; Kang YJ; Majd S; Butler PJ; Walz T; Aksimentiev A; Hou JL; Kumar M
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9810-5. PubMed ID: 26216964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-Induced Self-Assembly of Amphiphilic Discotic Molecules for Adaptive Artificial Water Channels.
    Chang HY; Wu KY; Chen WC; Weng JT; Chen CY; Raj A; Hamaguchi HO; Chuang WT; Wang X; Wang CL
    ACS Nano; 2021 Sep; 15(9):14885-14890. PubMed ID: 34410689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic Approach for Highly Selective Artificial Water Channels Based on Tubular Pillar[5]arene Dimers.
    Strilets D; Fa S; Hardiagon A; Baaden M; Ogoshi T; Barboiu M
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):23213-23219. PubMed ID: 32905651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of water-specific transport through the AQP1 water channel.
    Sui H; Han BG; Lee JK; Walian P; Jap BK
    Nature; 2001 Dec 20-27; 414(6866):872-8. PubMed ID: 11780053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of proton exclusion in aquaporin channels.
    Ilan B; Tajkhorshid E; Schulten K; Voth GA
    Proteins; 2004 May; 55(2):223-8. PubMed ID: 15048815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aquafoldmer-Based Aquaporin-like Synthetic Water Channel.
    Shen J; Ye R; Romanies A; Roy A; Chen F; Ren C; Liu Z; Zeng H
    J Am Chem Soc; 2020 Jun; 142(22):10050-10058. PubMed ID: 32375470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.