These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 35674870)
41. Environmental neurotoxic pesticide exposure induces gut inflammation and enteric neuronal degeneration by impairing enteric glial mitochondrial function in pesticide models of Parkinson's disease: Potential relevance to gut-brain axis inflammation in Parkinson's disease pathogenesis. Palanisamy BN; Sarkar S; Malovic E; Samidurai M; Charli A; Zenitsky G; Jin H; Anantharam V; Kanthasamy A; Kanthasamy AG Int J Biochem Cell Biol; 2022 Jun; 147():106225. PubMed ID: 35550926 [TBL] [Abstract][Full Text] [Related]
42. Inhibition of the JAK/STAT Pathway Protects Against α-Synuclein-Induced Neuroinflammation and Dopaminergic Neurodegeneration. Qin H; Buckley JA; Li X; Liu Y; Fox TH; Meares GP; Yu H; Yan Z; Harms AS; Li Y; Standaert DG; Benveniste EN J Neurosci; 2016 May; 36(18):5144-59. PubMed ID: 27147665 [TBL] [Abstract][Full Text] [Related]
43. Intestinal Barrier Dysfunction in the Absence of Systemic Inflammation Fails to Exacerbate Motor Dysfunction and Brain Pathology in a Mouse Model of Parkinson's Disease. Jackson A; Engen PA; Forsyth CB; Shaikh M; Naqib A; Wilber S; Frausto DM; Raeisi S; Green SJ; Bradaric BD; Persons AL; Voigt RM; Keshavarzian A Front Neurol; 2022; 13():882628. PubMed ID: 35665034 [TBL] [Abstract][Full Text] [Related]
44. Current perspective of mitochondrial biology in Parkinson's disease. Ammal Kaidery N; Thomas B Neurochem Int; 2018 Jul; 117():91-113. PubMed ID: 29550604 [TBL] [Abstract][Full Text] [Related]
45. The role of the microbiota-gut-brain axis and intestinal microbiome dysregulation in Parkinson's disease. Li Q; Meng LB; Chen LJ; Shi X; Tu L; Zhou Q; Yu JL; Liao X; Zeng Y; Yuan QY Front Neurol; 2023; 14():1185375. PubMed ID: 37305758 [TBL] [Abstract][Full Text] [Related]
46. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease]. Hattori N Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506 [TBL] [Abstract][Full Text] [Related]
47. Modulation of Gut Microbiota Through Dietary Intervention in Neuroinflammation and Alzheimer's and Parkinson's Diseases. Ayten Ş; Bilici S Curr Nutr Rep; 2024 Jun; 13(2):82-96. PubMed ID: 38652236 [TBL] [Abstract][Full Text] [Related]
48. Neuroinflammation in Parkinson's disease: its role in neuronal death and implications for therapeutic intervention. Tansey MG; Goldberg MS Neurobiol Dis; 2010 Mar; 37(3):510-8. PubMed ID: 19913097 [TBL] [Abstract][Full Text] [Related]
50. Neuroinflammation in Gaucher disease, neuronal ceroid lipofuscinosis, and commonalities with Parkinson's disease. Francelle L; Mazzulli JR Brain Res; 2022 Apr; 1780():147798. PubMed ID: 35063468 [TBL] [Abstract][Full Text] [Related]
51. Role of microglial metabolic reprogramming in Parkinson's disease. Huang ZP; Liu SF; Zhuang JL; Li LY; Li MM; Huang YL; Chen YH; Chen XR; Lin S; Ye LC; Chen CN Biochem Pharmacol; 2023 Jul; 213():115619. PubMed ID: 37211170 [TBL] [Abstract][Full Text] [Related]
52. ICAM-1 may promote the loss of dopaminergic neurons by regulating inflammation in MPTP-induced Parkinson's disease mouse models. Zhang F; Pan L; Lian C; Xu Z; Chen H; Lai W; Liang X; Liu Q; Wu H; Wang Y; Zhang P; Zhang G; Liu Z Brain Res Bull; 2024 Aug; 214():110989. PubMed ID: 38825252 [TBL] [Abstract][Full Text] [Related]
53. Nuclear Factor Kappa B: A Nobel Therapeutic Target of FlavonoidsAgainst Parkinson's Disease. Singh NK; Singh A; Mayank Comb Chem High Throughput Screen; 2024; 27(14):2062-2077. PubMed ID: 38243959 [TBL] [Abstract][Full Text] [Related]
54. Constitutively active STING causes neuroinflammation and degeneration of dopaminergic neurons in mice. Szego EM; Malz L; Bernhardt N; Rösen-Wolff A; Falkenburger BH; Luksch H Elife; 2022 Oct; 11():. PubMed ID: 36314770 [TBL] [Abstract][Full Text] [Related]
55. Mechanisms of Autoimmune Cell in DA Neuron Apoptosis of Parkinson's Disease: Recent Advancement. Zheng Z; Zhang S; Zhang H; Gao Z; Wang X; Liu X; Xue C; Yao L; Lu G Oxid Med Cell Longev; 2022; 2022():7965433. PubMed ID: 36567855 [TBL] [Abstract][Full Text] [Related]
56. Microglia Mediated Neuroinflammation in Parkinson's Disease. Isik S; Yeman Kiyak B; Akbayir R; Seyhali R; Arpaci T Cells; 2023 Mar; 12(7):. PubMed ID: 37048085 [TBL] [Abstract][Full Text] [Related]
57. Microbiome-Gut-Brain Axis and Toll-Like Receptors in Parkinson's Disease. Caputi V; Giron MC Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29882798 [TBL] [Abstract][Full Text] [Related]
58. Intestinal microbiota and neuroinflammation in Parkinson's disease: At the helm of the gut-brain axis. Manfready RA; Goetz CG; Keshavarzian A Int Rev Neurobiol; 2022; 167():81-99. PubMed ID: 36427960 [TBL] [Abstract][Full Text] [Related]
59. The mechanisms of white matter injury and immune system crosstalk in promoting the progression of Parkinson's disease: a narrative review. Ma W; Geng Y; Liu Y; Pan H; Wang Q; Zhang Y; Wang L Front Aging Neurosci; 2024; 16():1345918. PubMed ID: 38863783 [TBL] [Abstract][Full Text] [Related]
60. Unravelling the role of gut microbiota in Parkinson's disease progression: Pathogenic and therapeutic implications. Rani L; Mondal AC Neurosci Res; 2021 Jul; 168():100-112. PubMed ID: 33417973 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]