These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 35675227)

  • 1. An approximate stochastic optimal control framework to simulate nonlinear neuro-musculoskeletal models in the presence of noise.
    Van Wouwe T; Ting LH; De Groote F
    PLoS Comput Biol; 2022 Jun; 18(6):e1009338. PubMed ID: 35675227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts.
    McKay JL; Ting LH
    PLoS Comput Biol; 2012; 8(4):e1002465. PubMed ID: 22511857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic optimal open-loop control as a theory of force and impedance planning via muscle co-contraction.
    Berret B; Jean F
    PLoS Comput Biol; 2020 Feb; 16(2):e1007414. PubMed ID: 32109941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimality in neuromuscular systems.
    Theodorou E; Valero-Cuevas FJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4510-6. PubMed ID: 21095783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots.
    Fu KC; Dalla Libera F; Ishiguro H
    Bioinspir Biomim; 2015 Oct; 10(5):056016. PubMed ID: 26448530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active control of bias for the control of posture and movement.
    Guigon E
    J Neurophysiol; 2010 Aug; 104(2):1090-102. PubMed ID: 20538773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hip and ankle responses for reactive balance emerge from varying priorities to reduce effort and kinematic excursion: A simulation study.
    Versteeg CS; Ting LH; Allen JL
    J Biomech; 2016 Oct; 49(14):3230-3237. PubMed ID: 27543251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonistic co-contraction can minimize muscular effort in systems with uncertainty.
    Koelewijn AD; Van Den Bogert AJ
    PeerJ; 2022; 10():e13085. PubMed ID: 35415011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle activity and co-contraction of musculoskeletal model during steering maneuver.
    Gao ZH; Fan D; Wang D; Zhao H; Zhao K; Chen C
    Biomed Mater Eng; 2014; 24(6):2697-706. PubMed ID: 25226974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robotics-based synthesis of human motion.
    Khatib O; Demircan E; De Sapio V; Sentis L; Besier T; Delp S
    J Physiol Paris; 2009; 103(3-5):211-9. PubMed ID: 19665552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal sensorimotor transformations for balance.
    Lockhart DB; Ting LH
    Nat Neurosci; 2007 Oct; 10(10):1329-36. PubMed ID: 17873869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system.
    Todorov E
    Neural Comput; 2005 May; 17(5):1084-108. PubMed ID: 15829101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bicycle can be balanced by stochastic optimal feedback control but only with accurate speed estimates.
    Maris E
    PLoS One; 2023; 18(2):e0278961. PubMed ID: 36848331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structurally optimal control model for predicting and analyzing human postural coordination.
    Bonnet V; Ramdani S; Fraisse P; Ramdani N; Lagarde J; Bardy BG
    J Biomech; 2011 Jul; 44(11):2123-8. PubMed ID: 21700288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociating variability and effort as determinants of coordination.
    O'Sullivan I; Burdet E; Diedrichsen J
    PLoS Comput Biol; 2009 Apr; 5(4):e1000345. PubMed ID: 19360132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical modeling and optimal control of human posture.
    Menegaldo LL; Fleury Ade T; Weber HI
    J Biomech; 2003 Nov; 36(11):1701-12. PubMed ID: 14522212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying human postural dynamics and control from unperturbed balance.
    Lee J; Zhang K; Hogan N
    J Neuroeng Rehabil; 2021 Mar; 18(1):54. PubMed ID: 33752698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational model for optimal muscle activity considering muscle viscoelasticity in wrist movements.
    Kambara H; Shin D; Koike Y
    J Neurophysiol; 2013 Apr; 109(8):2145-60. PubMed ID: 23324321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy and effort costs together lead to temporal asynchrony of multiple motor commands.
    Tanis D; Calalo JA; Cashaback JGA; Kurtzer IL
    J Neurophysiol; 2023 Jan; 129(1):1-6. PubMed ID: 36448693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.