These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35675257)

  • 21. A Fully Automated Multimodal MRI-Based Multi-Task Learning for Glioma Segmentation and IDH Genotyping.
    Cheng J; Liu J; Kuang H; Wang J
    IEEE Trans Med Imaging; 2022 Jun; 41(6):1520-1532. PubMed ID: 35020590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Disparity Refinement Framework for Learning-based Stereo Matching Methods in Cross-domain Setting for Laparoscopic Images.
    Yang Z; Simon R; Linte C
    Proc SPIE Int Soc Opt Eng; 2023 Feb; 12466():. PubMed ID: 37124469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A convolutional neural network algorithm for automatic segmentation of head and neck organs at risk using deep lifelong learning.
    Chan JW; Kearney V; Haaf S; Wu S; Bogdanov M; Reddick M; Dixit N; Sudhyadhom A; Chen J; Yom SS; Solberg TD
    Med Phys; 2019 May; 46(5):2204-2213. PubMed ID: 30887523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Holistically-Nested U-Net: Surgical Instrument Segmentation Based on Convolutional Neural Network.
    Yu L; Wang P; Yu X; Yan Y; Xia Y
    J Digit Imaging; 2020 Apr; 33(2):341-347. PubMed ID: 31595347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate instance segmentation of surgical instruments in robotic surgery: model refinement and cross-dataset evaluation.
    Kong X; Jin Y; Dou Q; Wang Z; Wang Z; Lu B; Dong E; Liu YH; Sun D
    Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1607-1614. PubMed ID: 34173182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. IAS-NET: Joint intraclassly adaptive GAN and segmentation network for unsupervised cross-domain in neonatal brain MRI segmentation.
    Li B; You X; Wang J; Peng Q; Yin S; Qi R; Ren Q; Hong Z
    Med Phys; 2021 Nov; 48(11):6962-6975. PubMed ID: 34494276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation.
    Liu L; Zhang Z; Li S; Ma K; Zheng Y
    Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Efficient Semi-Supervised Framework with Multi-Task and Curriculum Learning for Medical Image Segmentation.
    Wang K; Wang Y; Zhan B; Yang Y; Zu C; Wu X; Zhou J; Nie D; Zhou L
    Int J Neural Syst; 2022 Sep; 32(9):2250043. PubMed ID: 35912583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. StaSiS-Net: A stacked and siamese disparity estimation network for depth reconstruction in modern 3D laparoscopy.
    Bardozzo F; Collins T; Forgione A; Hostettler A; Tagliaferri R
    Med Image Anal; 2022 Apr; 77():102380. PubMed ID: 35139482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RASNet: Segmentation for Tracking Surgical Instruments in Surgical Videos Using Refined Attention Segmentation Network.
    Ni ZL; Bian GB; Xie XL; Hou ZG; Zhou XH; Zhou YJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5735-5738. PubMed ID: 31947155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autoencoder based self-supervised test-time adaptation for medical image analysis.
    He Y; Carass A; Zuo L; Dewey BE; Prince JL
    Med Image Anal; 2021 Aug; 72():102136. PubMed ID: 34246070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parallax attention stereo matching network based on the improved group-wise correlation stereo network.
    Yu X; Gu J; Huang Z; Zhang Z
    PLoS One; 2022; 17(2):e0263735. PubMed ID: 35139127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unsupervised deep learning for depth estimation with offset pixels.
    Imran S; Bin Mukarram S; Karim Khan MU; Kyung CM
    Opt Express; 2020 Mar; 28(6):8619-8639. PubMed ID: 32225483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bidirectional cross-modality unsupervised domain adaptation using generative adversarial networks for cardiac image segmentation.
    Cui H; Yuwen C; Jiang L; Xia Y; Zhang Y
    Comput Biol Med; 2021 Sep; 136():104726. PubMed ID: 34371318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Depth Estimation for Light-Field Images Using Stereo Matching and Convolutional Neural Networks.
    Rogge S; Schiopu I; Munteanu A
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33143080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An adaptive and fully automatic method for estimating the 3D position of bendable instruments using endoscopic images.
    Cabras P; Nageotte F; Zanne P; Doignon C
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28387448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Breast ultrasound image segmentation: A coarse-to-fine fusion convolutional neural network.
    Wang K; Liang S; Zhong S; Feng Q; Ning Z; Zhang Y
    Med Phys; 2021 Aug; 48(8):4262-4278. PubMed ID: 34053092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards annotation-efficient segmentation via image-to-image translation.
    Vorontsov E; Molchanov P; Gazda M; Beckham C; Kautz J; Kadoury S
    Med Image Anal; 2022 Nov; 82():102624. PubMed ID: 36208571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time instance segmentation of surgical instruments using attention and multi-scale feature fusion.
    Cerón JCÁ; Ruiz GO; Chang L; Ali S
    Med Image Anal; 2022 Oct; 81():102569. PubMed ID: 35985195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.