BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35675320)

  • 1. Patterns of Phenotypic Evolution Associated with Marine/Freshwater Transitions in Fishes.
    de Brito V; Betancur-R R; Burns MD; Buser TJ; Conway KW; Fontenelle JP; Kolmann MA; McCraney WT; Thacker CE; Bloom DD
    Integr Comp Biol; 2022 Aug; 62(2):406-423. PubMed ID: 35675320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent Processes Drive Parallel Evolution in Marine and Freshwater Fishes.
    Friedman ST; Collyer ML; Price SA; Wainwright PC
    Syst Biol; 2022 Oct; 71(6):1319-1330. PubMed ID: 34605882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fossil-based comparative analyses reveal ancient marine ancestry erased by extinction in ray-finned fishes.
    Betancur-R R; Ortí G; Pyron RA
    Ecol Lett; 2015 May; 18(5):441-50. PubMed ID: 25808114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary patterns of diadromy in fishes: more than a transitional state between marine and freshwater.
    Corush JB
    BMC Evol Biol; 2019 Aug; 19(1):168. PubMed ID: 31412761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary bottlenecks in brackish water habitats drive the colonization of fresh water by stingrays.
    Kirchhoff KN; Hauffe T; Stelbrink B; Albrecht C; Wilke T
    J Evol Biol; 2017 Aug; 30(8):1576-1591. PubMed ID: 28590074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do freshwater fishes diversify faster than marine fishes? A test using state-dependent diversification analyses and molecular phylogenetics of new world silversides (atherinopsidae).
    Bloom DD; Weir JT; Piller KR; Lovejoy NR
    Evolution; 2013 Jul; 67(7):2040-57. PubMed ID: 23815658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular phylogenetics supports multiple evolutionary transitions from marine to freshwater habitats in ariid catfishes.
    Betancur-R R
    Mol Phylogenet Evol; 2010 Apr; 55(1):249-258. PubMed ID: 20045737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological Transitions and the Shape of the Decapod Tree of Life.
    Davis KE; De Grave S; Delmer C; Payne ARD; Mitchell S; Wills MA
    Integr Comp Biol; 2022 Aug; 62(2):332-344. PubMed ID: 35612997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marine-freshwater transitions are associated with the evolution of dietary diversification in terapontid grunters (Teleostei: Terapontidae).
    Davis AM; Unmack PJ; Pusey BJ; Johnson JB; Pearson RG
    J Evol Biol; 2012 Jun; 25(6):1163-79. PubMed ID: 22519660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for general size-by-habitat rules in actinopterygian fishes across nine scales of observation.
    Clarke JT
    Ecol Lett; 2021 Aug; 24(8):1569-1581. PubMed ID: 34110065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diatoms diversify and turn over faster in freshwater than marine environments.
    Nakov T; Beaulieu JM; Alverson AJ
    Evolution; 2019 Dec; 73(12):2497-2511. PubMed ID: 31429470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do habitat shifts drive diversification in teleost fishes? An example from the pufferfishes (Tetraodontidae).
    Santini F; Nguyen MT; Sorenson L; Waltzek TB; Lynch Alfaro JW; Eastman JM; Alfaro ME
    J Evol Biol; 2013 May; 26(5):1003-18. PubMed ID: 23496826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of Japanese three-spined stickleback clades reveals the Pacific Ocean lineage has adapted to freshwater environments while the Japan Sea has not.
    Ravinet M; Takeuchi N; Kume M; Mori S; Kitano J
    PLoS One; 2014; 9(12):e112404. PubMed ID: 25460163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecological and Phenotypic Diversification after a Continental Invasion in Neotropical Freshwater Stingrays.
    Kolmann MA; Marques FPL; Weaver JC; Dean MN; Fontenelle JP; Lovejoy NR
    Integr Comp Biol; 2022 Aug; 62(2):424-440. PubMed ID: 35482600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why are there so few fish in the sea?
    Carrete Vega G; Wiens JJ
    Proc Biol Sci; 2012 Jun; 279(1737):2323-9. PubMed ID: 22319126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenomics, Lineage Diversification Rates, and the Evolution of Diadromy in Clupeiformes (Anchovies, Herrings, Sardines, and Relatives).
    Egan JP; Simons AM; Alavi-Yeganeh MS; Hammer MP; Tongnunui P; Arcila D; Betancur-R R; Bloom DD
    Syst Biol; 2024 May; ():. PubMed ID: 38756097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resolving Marine-Freshwater Transitions by Diatoms Through a Fog of Gene Tree Discordance.
    Roberts WR; Ruck EC; Downey KM; Pinseel E; Alverson AJ
    Syst Biol; 2023 Nov; 72(5):984-997. PubMed ID: 37335140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explaining the ocean's richest biodiversity hotspot and global patterns of fish diversity.
    Miller EC; Hayashi KT; Song D; Wiens JJ
    Proc Biol Sci; 2018 Oct; 285(1888):. PubMed ID: 30305433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supertree analyses of the roles of viviparity and habitat in the evolution of atherinomorph fishes.
    Mank JE; Avise JC
    J Evol Biol; 2006 May; 19(3):734-40. PubMed ID: 16674570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Greater diversification of freshwater than marine parasites of fish.
    Poulin R
    Int J Parasitol; 2016 Apr; 46(4):275-9. PubMed ID: 26802461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.