These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 35675353)

  • 21. Integrative Analysis Identifies Key Molecular Signatures Underlying Neurodevelopmental Deficits in Fragile X Syndrome.
    Utami KH; Skotte NH; Colaço AR; Yusof NABM; Sim B; Yeo XY; Bae HG; Garcia-Miralles M; Radulescu CI; Chen Q; Chaldaiopoulou G; Liany H; Nama S; Peteri UA; Sampath P; Castrén ML; Jung S; Mann M; Pouladi MA
    Biol Psychiatry; 2020 Sep; 88(6):500-511. PubMed ID: 32653109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activity-dependent regulation of release probability at excitatory hippocampal synapses: a crucial role of fragile X mental retardation protein in neurotransmission.
    Wang XS; Peng CZ; Cai WJ; Xia J; Jin D; Dai Y; Luo XG; Klyachko VA; Deng PY
    Eur J Neurosci; 2014 May; 39(10):1602-12. PubMed ID: 24646437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post-translational modifications of the Fragile X Mental Retardation Protein in neuronal function and dysfunction.
    Prieto M; Folci A; Martin S
    Mol Psychiatry; 2020 Aug; 25(8):1688-1703. PubMed ID: 31822816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Abnormal neuronal morphology and neurochemistry in the auditory brainstem of Fmr1 knockout rats.
    Ruby K; Falvey K; Kulesza RJ
    Neuroscience; 2015 Sep; 303():285-98. PubMed ID: 26166728
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fragile X mental retardation protein induces synapse loss through acute postsynaptic translational regulation.
    Pfeiffer BE; Huber KM
    J Neurosci; 2007 Mar; 27(12):3120-30. PubMed ID: 17376973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voltage-Independent SK-Channel Dysfunction Causes Neuronal Hyperexcitability in the Hippocampus of
    Deng PY; Carlin D; Oh YM; Myrick LK; Warren ST; Cavalli V; Klyachko VA
    J Neurosci; 2019 Jan; 39(1):28-43. PubMed ID: 30389838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinase pathway inhibition restores PSD95 induction in neurons lacking fragile X mental retardation protein.
    Yang Y; Geng Y; Jiang D; Ning L; Kim HJ; Jeon NL; Lau A; Chen L; Lin MZ
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):12007-12012. PubMed ID: 31118285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated transcriptome analysis of human iPS cells derived from a fragile X syndrome patient during neuronal differentiation.
    Lu P; Chen X; Feng Y; Zeng Q; Jiang C; Zhu X; Fan G; Xue Z
    Sci China Life Sci; 2016 Nov; 59(11):1093-1105. PubMed ID: 27730449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The fragile X-cerebellum connection.
    Huber KM
    Trends Neurosci; 2006 Apr; 29(4):183-5. PubMed ID: 16500716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Altered maturation of the primary somatosensory cortex in a mouse model of fragile X syndrome.
    Till SM; Wijetunge LS; Seidel VG; Harlow E; Wright AK; Bagni C; Contractor A; Gillingwater TH; Kind PC
    Hum Mol Genet; 2012 May; 21(10):2143-56. PubMed ID: 22328088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elevated ERK/p90 ribosomal S6 kinase activity underlies audiogenic seizure susceptibility in fragile X mice.
    Sawicka K; Pyronneau A; Chao M; Bennett MV; Zukin RS
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):E6290-E6297. PubMed ID: 27663742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracking the Fragile X Mental Retardation Protein in a Highly Ordered Neuronal RiboNucleoParticles Population: A Link between Stalled Polyribosomes and RNA Granules.
    El Fatimy R; Davidovic L; Tremblay S; Jaglin X; Dury A; Robert C; De Koninck P; Khandjian EW
    PLoS Genet; 2016 Jul; 12(7):e1006192. PubMed ID: 27462983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fragile X mental retardation protein regulates the levels of scaffold proteins and glutamate receptors in postsynaptic densities.
    Schütt J; Falley K; Richter D; Kreienkamp HJ; Kindler S
    J Biol Chem; 2009 Sep; 284(38):25479-87. PubMed ID: 19640847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of a molecular locus for normalizing dysregulated GABA release from interneurons in the Fragile X brain.
    Yang YM; Arsenault J; Bah A; Krzeminski M; Fekete A; Chao OY; Pacey LK; Wang A; Forman-Kay J; Hampson DR; Wang LY
    Mol Psychiatry; 2020 Sep; 25(9):2017-2035. PubMed ID: 30224722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fmr1 deficiency promotes age-dependent alterations in the cortical synaptic proteome.
    Tang B; Wang T; Wan H; Han L; Qin X; Zhang Y; Wang J; Yu C; Berton F; Francesconi W; Yates JR; Vanderklish PW; Liao L
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):E4697-706. PubMed ID: 26307763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FMRP Expression Levels in Mouse Central Nervous System Neurons Determine Behavioral Phenotype.
    Arsenault J; Gholizadeh S; Niibori Y; Pacey LK; Halder SK; Koxhioni E; Konno A; Hirai H; Hampson DR
    Hum Gene Ther; 2016 Dec; 27(12):982-996. PubMed ID: 27604541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic upregulation of BK channel activity normalizes multiple synaptic and circuit defects in a mouse model of fragile X syndrome.
    Deng PY; Klyachko VA
    J Physiol; 2016 Jan; 594(1):83-97. PubMed ID: 26427907
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell-type-specific disruption of cortico-striatal circuitry drives repetitive patterns of behavior in fragile X syndrome model mice.
    Longo F; Aryal S; Anastasiades PG; Maltese M; Baimel C; Albanese F; Tabor J; Zhu JD; Oliveira MM; Gastaldo D; Bagni C; Santini E; Tritsch NX; Carter AG; Klann E
    Cell Rep; 2023 Aug; 42(8):112901. PubMed ID: 37505982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of FMR1 deletion in a subpopulation of post-mitotic neurons in mouse cortex and hippocampus.
    Amiri A; Sanchez-Ortiz E; Cho W; Birnbaum SG; Xu J; McKay RM; Parada LF
    Autism Res; 2014 Feb; 7(1):60-71. PubMed ID: 24408886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Excessive astrocyte-derived neurotrophin-3 contributes to the abnormal neuronal dendritic development in a mouse model of fragile X syndrome.
    Yang Q; Feng B; Zhang K; Guo YY; Liu SB; Wu YM; Li XQ; Zhao MG
    PLoS Genet; 2012; 8(12):e1003172. PubMed ID: 23300470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.