These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 35675373)
1. Modelling the mass adoption potential of wearable medical devices. Yang Q; Al Mamun A; Hayat N; Salleh MFM; Jingzu G; Zainol NR PLoS One; 2022; 17(6):e0269256. PubMed ID: 35675373 [TBL] [Abstract][Full Text] [Related]
2. How health motivation moderates the effect of intention and usage of wearable medical devices? An empirical study in Malaysia. Hayat N; Zainol NR; Salameh AA; Al Mamun A; Yang Q; Md Salleh MF Front Public Health; 2022; 10():931557. PubMed ID: 36045735 [TBL] [Abstract][Full Text] [Related]
3. Modeling the Intention and Adoption of Wearable Fitness Devices: A Study Using SEM-PLS Analysis. Yang Q; Al Mamun A; Hayat N; Jingzu G; Hoque ME; Salameh AA Front Public Health; 2022; 10():918989. PubMed ID: 35875013 [TBL] [Abstract][Full Text] [Related]
4. Modeling the adoption of medical wearable devices among the senior adults: Using hybrid SEM-neural network approach. Xinyan Z; Mamun AA; Ali MH; Siyu L; Yang Q; Hayat N Front Public Health; 2022; 10():1016065. PubMed ID: 36388276 [TBL] [Abstract][Full Text] [Related]
5. Predicting the intention and adoption of wearable payment devices using hybrid SEM-neural network analysis. Al Mamun A; Naznen F; Yang M; Yang Q; Wu M; Masukujjaman M Sci Rep; 2023 Jul; 13(1):11217. PubMed ID: 37433838 [TBL] [Abstract][Full Text] [Related]
6. Smart technology for healthcare: Exploring the antecedents of adoption intention of healthcare wearable technology. Chau KY; Lam MHS; Cheung ML; Tso EKH; Flint SW; Broom DR; Tse G; Lee KY Health Psychol Res; 2019 Mar; 7(1):8099. PubMed ID: 31583292 [TBL] [Abstract][Full Text] [Related]
7. Exploring the mass adoption potential of wearable fitness devices in Malaysia. Hayat N; Salameh AA; Mamun AA; Alam SS; Zainol NR Digit Health; 2023; 9():20552076231180728. PubMed ID: 37325073 [TBL] [Abstract][Full Text] [Related]
8. Predicting the intention to adopt wearable payment devices in China: The use of hybrid SEM-Neural network approach. Luyao L; Al Mamun A; Hayat N; Yang Q; Hoque ME; Zainol NR PLoS One; 2022; 17(8):e0273849. PubMed ID: 36040924 [TBL] [Abstract][Full Text] [Related]
9. Technical attributes, health attribute, consumer attributes and their roles in adoption intention of healthcare wearable technology. Zhang M; Luo M; Nie R; Zhang Y Int J Med Inform; 2017 Dec; 108():97-109. PubMed ID: 29132639 [TBL] [Abstract][Full Text] [Related]
10. Impact of the Moderating Effect of National Culture on Adoption Intention in Wearable Health Care Devices: Meta-analysis. Zhang Z; Xia E; Huang J JMIR Mhealth Uhealth; 2022 Jun; 10(6):e30960. PubMed ID: 35657654 [TBL] [Abstract][Full Text] [Related]
11. Envisaging the intention and adoption of electronic health applications among middle-aged and older adults: Evidence from an emerging economy. Hayat N; Al Mamun A; Gao J; Yang Q; Hussain WMHW Digit Health; 2024; 10():20552076241237499. PubMed ID: 38449679 [TBL] [Abstract][Full Text] [Related]
12. Predicting the Mass Adoption of eDoctor Apps During COVID-19 in China Using Hybrid SEM-Neural Network Analysis. Yang Q; Al Mamun A; Hayat N; Md Salleh MF; Salameh AA; Makhbul ZKM Front Public Health; 2022; 10():889410. PubMed ID: 35570961 [TBL] [Abstract][Full Text] [Related]
13. The path to sustainability begins with going paperless: Antecedents of intention to use electronic wallet using serial mediation approach. Che Nawi N; Husin HS; Said Al-Jahwari N; Zainuddin SA; Khan NU; Hassan AA; Wan Ibrahim WSAA; Mohamed AF; Mohd Nasir NS; Muhamad Hasan MZ Heliyon; 2024 Jan; 10(2):e24127. PubMed ID: 38298640 [TBL] [Abstract][Full Text] [Related]
14. The willingness to continue using wearable devices among the elderly: SEM and FsQCA analysis. Wang Y; Lu L; Zhang R; Ma Y; Zhao S; Liang C BMC Med Inform Decis Mak; 2023 Oct; 23(1):218. PubMed ID: 37845659 [TBL] [Abstract][Full Text] [Related]
15. Health monitoring through wearable technologies for older adults: Smart wearables acceptance model. Li J; Ma Q; Chan AH; Man SS Appl Ergon; 2019 Feb; 75():162-169. PubMed ID: 30509522 [TBL] [Abstract][Full Text] [Related]
16. Wearable Technology Acceptance in Health Care Based on National Culture Differences: Cross-Country Analysis Between Chinese and Swiss Consumers. Yang Meier D; Barthelmess P; Sun W; Liberatore F J Med Internet Res; 2020 Oct; 22(10):e18801. PubMed ID: 33090108 [TBL] [Abstract][Full Text] [Related]
17. Exploring the smart wearable payment device adoption intention: Using the symmetrical and asymmetrical analysis methods. Hayat N; Al Mamun A; Salameh AA; Ali MH; Hussain WMHW; Zainol NR Front Psychol; 2022; 13():863544. PubMed ID: 36148091 [TBL] [Abstract][Full Text] [Related]
18. Predicting m-health acceptance from the perspective of unified theory of acceptance and use of technology. Yang M; Al Mamun A; Gao J; Rahman MK; Salameh AA; Alam SS Sci Rep; 2024 Jan; 14(1):339. PubMed ID: 38172184 [TBL] [Abstract][Full Text] [Related]
19. Examining Consumers' Adoption of Wearable Healthcare Technology: The Role of Health Attributes. Cheung ML; Chau KY; Lam MHS; Tse G; Ho KY; Flint SW; Broom DR; Tso EKH; Lee KY Int J Environ Res Public Health; 2019 Jun; 16(13):. PubMed ID: 31247962 [TBL] [Abstract][Full Text] [Related]
20. Research on elderly users' intentions to accept wearable devices based on the improved UTAUT model. Chen J; Wang T; Fang Z; Wang H Front Public Health; 2022; 10():1035398. PubMed ID: 36699866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]