These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 3567542)

  • 1. Factors influencing the evolution of acoustic communication: biological constraints.
    Ryan MJ
    Brain Behav Evol; 1986; 28(1-3):70-82. PubMed ID: 3567542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Call transmission efficiency in native and invasive anurans: competing hypotheses of divergence in acoustic signals.
    Llusia D; Gómez M; Penna M; Márquez R
    PLoS One; 2013; 8(10):e77312. PubMed ID: 24155940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of auditory insensitivity to vocalization frequencies in two frogs.
    Goutte S; Mason MJ; Christensen-Dalsgaard J; Montealegre-Z F; Chivers BD; Sarria-S FA; Antoniazzi MM; Jared C; Almeida Sato L; Felipe Toledo L
    Sci Rep; 2017 Sep; 7(1):12121. PubMed ID: 28935936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can treefrog phylogeographical clades and species' phylogenetic topologies be recovered by bioacoustical analyses?
    Forti LR; Lingnau R; Encarnação LC; Bertoluci J; Toledo LF
    PLoS One; 2017; 12(2):e0169911. PubMed ID: 28235089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How the environment shapes animal signals: a test of the acoustic adaptation hypothesis in frogs.
    Goutte S; Dubois A; Howard SD; Márquez R; Rowley JJL; Dehling JM; Grandcolas P; Xiong RC; Legendre F
    J Evol Biol; 2018 Jan; 31(1):148-158. PubMed ID: 29150984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geographic variation in acoustic communication in anurans and its neuroethological implications.
    Velásquez NA
    J Physiol Paris; 2014; 108(2-3):167-73. PubMed ID: 25446892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Floating frogs sound larger: environmental constraints on signal production drives call frequency changes.
    Goutte S; Muñoz MI; Ryan MJ; Halfwerk W
    Naturwissenschaften; 2020 Sep; 107(5):41. PubMed ID: 32970183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of sound production in túngara frogs and its role in sexual selection and speciation.
    Ryan MJ; Guerra MA
    Curr Opin Neurobiol; 2014 Oct; 28():54-9. PubMed ID: 25033110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended amplification of acoustic signals by amphibian burrows.
    Muñoz MI; Penna M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Jul; 202(7):473-87. PubMed ID: 27209276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using citizen science to test for acoustic niche partitioning in frogs.
    Allen-Ankins S; Schwarzkopf L
    Sci Rep; 2022 Feb; 12(1):2447. PubMed ID: 35165349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental influences on acoustic and electric animal communication.
    Brenowitz EA
    Brain Behav Evol; 1986; 28(1-3):32-42. PubMed ID: 3567539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Severe constraints for sound communication in a frog from the South American temperate forest.
    Penna M; Plaza A; Moreno-Gómez FN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Aug; 199(8):723-33. PubMed ID: 23748250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs.
    Both C; Grant T
    Biol Lett; 2012 Oct; 8(5):714-6. PubMed ID: 22675139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental constraints and call evolution in torrent-dwelling frogs.
    Goutte S; Dubois A; Howard SD; Marquez R; Rowley JJ; Dehling JM; Grandcolas P; Rongchuan X; Legendre F
    Evolution; 2016 Apr; 70(4):811-26. PubMed ID: 26960074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of phonotactic preferences of female frogs and its consequences for signal evolution.
    Velásquez NA; Valdés JL; Vásquez RA; Penna M
    Behav Processes; 2015 Sep; 118():76-84. PubMed ID: 26051194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The origins of acoustic communication in vertebrates.
    Chen Z; Wiens JJ
    Nat Commun; 2020 Jan; 11(1):369. PubMed ID: 31953401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs.
    Amézquita A; Flechas SV; Lima AP; Gasser H; Hödl W
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):17058-63. PubMed ID: 21969562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication.
    Kelley DB; Ballagh IH; Barkan CL; Bendesky A; Elliott TM; Evans BJ; Hall IC; Kwon YM; Kwong-Brown U; Leininger EC; Perez EC; Rhodes HJ; Villain A; Yamaguchi A; Zornik E
    J Neurosci; 2020 Jan; 40(1):22-36. PubMed ID: 31896561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic radiation patterns of mating calls of the tungara frog (Physalaemus pustuosus): implications for multiple receivers.
    Bernal XE; Page RA; Ryan MJ; Argo TF; Wilson PS
    J Acoust Soc Am; 2009 Nov; 126(5):2757-67. PubMed ID: 19894851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental and morphological constraints interact to drive the evolution of communication signals in frogs.
    Muñoz MI; Goutte S; Ellers J; Halfwerk W
    J Evol Biol; 2020 Dec; 33(12):1749-1757. PubMed ID: 33047401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.