BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35675451)

  • 1. Haptic perception using optoelectronic robotic flesh for embodied artificially intelligent agents.
    Barreiros JA; Xu A; Pugach S; Iyengar N; Troxell G; Cornwell A; Hong S; Selman B; Shepherd RF
    Sci Robot; 2022 Jun; 7(67):eabi6745. PubMed ID: 35675451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skin-Inspired Multi-Modal Mechanoreceptors for Dynamic Haptic Exploration.
    Su J; Zhang H; Li H; He K; Tu J; Zhang F; Liu Z; Lv Z; Cui Z; Li Y; Li J; Tang LZ; Chen X
    Adv Mater; 2024 May; 36(21):e2311549. PubMed ID: 38363810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmentation of haptic feedback for teleoperated robotic surgery.
    Schleer P; Kaiser P; Drobinsky S; Radermacher K
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):515-529. PubMed ID: 32002750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of haptic feedback in tele-operated robotic surgery.
    El Rassi I; El Rassi JM
    J Med Eng Technol; 2020 Jul; 44(5):247-254. PubMed ID: 32573288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable distributed fiber-optic sensors.
    Bai H; Li S; Barreiros J; Tu Y; Pollock CR; Shepherd RF
    Science; 2020 Nov; 370(6518):848-852. PubMed ID: 33184214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of haptic feedback on applied intracorporeal forces using a novel surgical robotic system-a randomized cross-over study with novices in an experimental setup.
    Miller J; Braun M; Bilz J; Matich S; Neupert C; Kunert W; Kirschniak A
    Surg Endosc; 2021 Jul; 35(7):3554-3563. PubMed ID: 32700151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haptic Intracorporeal Palpation Using a Cable-Driven Parallel Robot: A User Study.
    Saracino A; Oude-Vrielink TJC; Menciassi A; Sinibaldi E; Mylonas GP
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3452-3463. PubMed ID: 32746002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Adaptive Perception of Object's Deformability with Multiple Deformation Attributes Utilizing Biomimetic Mechanoreceptors.
    Lin W; Wang Z; Xu Y; Hu Z; Zhao W; Zhu Z; Sun Z; Wang G; Peng Z
    Adv Mater; 2024 Mar; 36(9):e2305032. PubMed ID: 37724482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning efficient haptic shape exploration with a rigid tactile sensor array.
    Fleer S; Moringen A; Klatzky RL; Ritter H
    PLoS One; 2020; 15(1):e0226880. PubMed ID: 31896135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surgeons and non-surgeons prefer haptic feedback of instrument vibrations during robotic surgery.
    Koehn JK; Kuchenbecker KJ
    Surg Endosc; 2015 Oct; 29(10):2970-83. PubMed ID: 25539693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Soft Robotic Wearable Wrist Device for Kinesthetic Haptic Feedback.
    Skorina EH; Luo M; Onal CD
    Front Robot AI; 2018; 5():83. PubMed ID: 33500962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and evaluation of a multi-modal haptic skin stimulation apparatus.
    Damian DD; Arieta AH; Okamura AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3455-8. PubMed ID: 22255083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring Force Intensity and Direction with a Spatially Resolved Soft Sensor for Biomechanics and Robotic Haptic Capability.
    Llamosi A; Toussaint S
    Soft Robot; 2019 Jun; 6(3):346-355. PubMed ID: 30855217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haptics in minimally invasive surgery--a review.
    Westebring-van der Putten EP; Goossens RH; Jakimowicz JJ; Dankelman J
    Minim Invasive Ther Allied Technol; 2008; 17(1):3-16. PubMed ID: 18270873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft, Stretchable, and Pneumatically Triggered Thermochromic Optical Filters with Embedded Phosphorescence.
    Jin Y; Baugh N; Lin Y; Ge M; Dickey MD
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26424-26431. PubMed ID: 32390411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Texture recognition and localization in amorphous robotic skin.
    Hughes D; Correll N
    Bioinspir Biomim; 2015 Sep; 10(5):055002. PubMed ID: 26352901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interdigitated Sensor Based on a Silicone Foam for Subtle Robotic Manipulation.
    Hesam Mahmoudinezhad M; Anderson I; Rosset S
    Macromol Rapid Commun; 2021 Mar; 42(5):e2000560. PubMed ID: 33274814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.