These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35675451)

  • 21. Cardiac X-ray image-based haptic guidance for robot-assisted coronary intervention: a feasibility study.
    Tahir A; Iqbal H; Usman M; Ghaffar A; Hafeez A
    Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):531-539. PubMed ID: 35041132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Integrated Sensor-Model Approach for Haptic Feedback of Flexible Endoscopic Robots.
    Lai W; Cao L; Tan RX; Tan YC; Li X; Phan PT; Tiong AMH; Tjin SC; Phee SJ
    Ann Biomed Eng; 2020 Jan; 48(1):342-356. PubMed ID: 31485875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphological Computation of Haptic Perception of a Controllable Stiffness Probe.
    Sornkarn N; Dasgupta P; Nanayakkara T
    PLoS One; 2016; 11(6):e0156982. PubMed ID: 27257814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial palpation in robotic surgery using haptic feedback.
    Abiri A; Juo YY; Tao A; Askari SJ; Pensa J; Bisley JW; Dutson EP; Grundfest WS
    Surg Endosc; 2019 Apr; 33(4):1252-1259. PubMed ID: 30187198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of haptic devices and end-users: Novel performance metrics in tele-robotic microsurgery.
    Hoshyarmanesh H; Zareinia K; Lama S; Durante B; Sutherland GR
    Int J Med Robot; 2020 Aug; 16(4):e2101. PubMed ID: 32181954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can a Soft Robotic Probe Use Stiffness Control Like a Human Finger to Improve Efficacy of Haptic Perception?
    Sornkarn N; Nanayakkara T
    IEEE Trans Haptics; 2017; 10(2):183-195. PubMed ID: 27775537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Soft Multi-Directional Force Sensor for Underwater Robotic Application.
    Subad RASI; Saikot MMH; Park K
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hand-tool-tissue interaction forces in neurosurgery for haptic rendering.
    Aggravi M; De Momi E; DiMeco F; Cardinale F; Casaceli G; Riva M; Ferrigno G; Prattichizzo D
    Med Biol Eng Comput; 2016 Aug; 54(8):1229-41. PubMed ID: 26718558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.
    Seung S; Choi H; Jang J; Kim YS; Park JO; Park S; Ko SY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):3-19. PubMed ID: 27856790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-Powered and Resilient IR-Based Pigmented Soft Optoelectronic Sensors.
    Jamil B; Rodrigue H
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):38144-38152. PubMed ID: 35943270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stretchable Nanocomposite Sensors, Nanomembrane Interconnectors, and Wireless Electronics toward Feedback-Loop Control of a Soft Earthworm Robot.
    Goldoni R; Ozkan-Aydin Y; Kim YS; Kim J; Zavanelli N; Mahmood M; Liu B; Hammond FL; Goldman DI; Yeo WH
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43388-43397. PubMed ID: 32791828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Dielectric Elastomer-Based Multimodal Capacitive Sensor.
    Zhu Y; Giffney T; Aw K
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of a vibration damping robot and force evaluation in intraoperative robotic-assisted femoral shaft repair using a modified soft damper.
    Orelaja OA; Xingsong W; Li J; Sh Dauda I; Afiz IA; Odunlami SA; Badmos AA; Sharif U
    Int J Med Robot; 2022 Feb; 18(1):e2349. PubMed ID: 34793632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A multimodal magnetoelastic artificial skin for underwater haptic sensing.
    Zhou Y; Zhao X; Xu J; Chen G; Tat T; Li J; Chen J
    Sci Adv; 2024 Jan; 10(1):eadj8567. PubMed ID: 38181088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing.
    Park K; Yuk H; Yang M; Cho J; Lee H; Kim J
    Sci Robot; 2022 Jun; 7(67):eabm7187. PubMed ID: 35675452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine Learning for Haptics: Inferring Multi-Contact Stimulation From Sparse Sensor Configuration.
    Sun H; Martius G
    Front Neurorobot; 2019; 13():51. PubMed ID: 31354467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial asymmetry in tactile sensor skin deformation aids perception of edge orientation during haptic exploration.
    Ponce Wong RD; Hellman RB; Santos VJ
    IEEE Trans Haptics; 2014; 7(2):191-202. PubMed ID: 24960552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Data analytics interrogates robotic surgical performance using a microsurgery-specific haptic device.
    Baghdadi A; Hoshyarmanesh H; de Lotbiniere-Bassett MP; Choi SK; Lama S; Sutherland GR
    Expert Rev Med Devices; 2020 Jul; 17(7):721-730. PubMed ID: 32536224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Soft robot perception using embedded soft sensors and recurrent neural networks.
    Thuruthel TG; Shih B; Laschi C; Tolley MT
    Sci Robot; 2019 Jan; 4(26):. PubMed ID: 33137762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.