These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35675710)

  • 1. Revisiting the Structure and Electrochemical Performance of Poly(
    Zhang X; Li G; Wang J; Chu J; Wang F; Hu Z; Song Z
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27968-27978. PubMed ID: 35675710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benzoquinone-Pyrrole Polymers as Cost-Effective Cathodes toward Practical Organic Batteries.
    Chu J; Li G; Wang Y; Zhang X; Yang Z; Han Y; Cai T; Song Z
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25566-25575. PubMed ID: 35611969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Low-Cost Organic Cathode for Aqueous Rechargeable Battery and Demonstrating the Proton Intercalation Mechanism for Pyrazine Energy Storage Unit.
    Niu S; Wang Y; Zhang J; Wang Y; Tian Y; Ju N; Wang H; Zhao S; Zhang X; Zhang W; Li C; Sun HB
    Small; 2024 May; 20(21):e2309022. PubMed ID: 38084449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Organic Cathode Material Based on Quinone and Pyrazine Motifs for Rechargeable Lithium and Zinc Batteries.
    Menart S; Lužanin O; Pirnat K; Pahovnik D; Moškon J; Dominko R
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16029-16039. PubMed ID: 38511931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing Extended π-Conjugated Molecules with
    Chen Z; Wang J; Cai T; Hu Z; Chu J; Wang F; Gan X; Song Z
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27994-28003. PubMed ID: 35695375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost-Effective Rechargeable Magnesium Battery Based on a Fluorinated Alkoxyaluminate Electrolyte and a Carbonyl Polymer Cathode.
    Hu Z; Huang L; Gan X; Han Y; Chu J; Song Z
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):19014-19025. PubMed ID: 38573769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Synthesis of Polyphenothiazine as a High-Performance p-Type Cathode for Rechargeable Lithium Batteries.
    Wang X; Li G; Han Y; Wang F; Chu J; Cai T; Wang B; Song Z
    ChemSusChem; 2021 Aug; 14(15):3174-3181. PubMed ID: 34101379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-Active High-Performance Polyimides as Versatile Electrode Materials for Organic Lithium- and Sodium-Ion Batteries.
    Lubis AL; Baskoro F; Lin TH; Wong HQ; Liou GS; Yen HJ
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38148122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conjugated Carbonyl Polymer-Based Flexible Cathode for Superior Lithium-Organic Batteries.
    Li Q; Li D; Wang H; Wang HG; Li Y; Si Z; Duan Q
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28801-28808. PubMed ID: 31313916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the Structure and Electrochemical Properties of Benzoquinone-Embedded COF via Heat Treatment for a High-Energy Organic Cathode.
    Amin K; Mehmood W; Zhang J; Ahmed S; Mao L; Li CF; Zhang BB; Wei Z
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37968096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferrocene-Based Mixed-Valence Metal-Organic Framework as an Efficient and Stable Cathode for Lithium-Ion-Based Dual-Ion Battery.
    Li C; Yang H; Xie J; Wang K; Li J; Zhang Q
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32719-32725. PubMed ID: 32602692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Energy Interlayer-Expanded Copper Sulfide Cathode Material in Non-Corrosive Electrolyte for Rechargeable Magnesium Batteries.
    Shen Y; Wang Y; Miao Y; Yang M; Zhao X; Shen X
    Adv Mater; 2020 Jan; 32(4):e1905524. PubMed ID: 31814193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Dimensional (2D) Covalent Organic Framework as Efficient Cathode for Binder-free Lithium-Ion Battery.
    Yao CJ; Wu Z; Xie J; Yu F; Guo W; Xu ZJ; Li DS; Zhang S; Zhang Q
    ChemSusChem; 2020 May; 13(9):2457-2463. PubMed ID: 31782976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Synthesis of Diazaanthraquinone Dimers as High-Capacity Organic Cathode Materials for Rechargeable Lithium Batteries.
    Zhang P; Gan X; Huang L; Wang J; Li M; Hu Z; Wang R; Yu T; Song Z
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14929-14939. PubMed ID: 38483071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode.
    Zhao Q; Lu Y; Zhu Z; Tao Z; Chen J
    Nano Lett; 2015 Sep; 15(9):5982-7. PubMed ID: 26241461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.