These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 35675713)
1. Replica-Exchange Enveloping Distribution Sampling Using Generalized AMBER Force-Field Topologies: Application to Relative Hydration Free-Energy Calculations for Large Sets of Molecules. Rieder SR; Ries B; Schaller K; Champion C; Barros EP; Hünenberger PH; Riniker S J Chem Inf Model; 2022 Jun; 62(12):3043-3056. PubMed ID: 35675713 [TBL] [Abstract][Full Text] [Related]
2. Replica-Exchange Enveloping Distribution Sampling: Calculation of Relative Free Energies in GROMOS. Rieder SR; Ries B; Champion C; Barros EP; Hünenberger PH; Riniker S Chimia (Aarau); 2022 Apr; 76(4):327-330. PubMed ID: 38069773 [TBL] [Abstract][Full Text] [Related]
3. Replica exchange enveloping distribution sampling (RE-EDS): A robust method to estimate multiple free-energy differences from a single simulation. Sidler D; Schwaninger A; Riniker S J Chem Phys; 2016 Oct; 145(15):154114. PubMed ID: 27782485 [TBL] [Abstract][Full Text] [Related]
4. Prediction of octanol-water partition coefficients for the SAMPL6-[Formula: see text] molecules using molecular dynamics simulations with OPLS-AA, AMBER and CHARMM force fields. Fan S; Iorga BI; Beckstein O J Comput Aided Mol Des; 2020 May; 34(5):543-560. PubMed ID: 31960254 [TBL] [Abstract][Full Text] [Related]
5. Leveraging the sampling efficiency of RE-EDS in OpenMM using a shifted reaction-field with an atom-based cutoff. Rieder SR; Ries B; Kubincová A; Champion C; Barros EP; Hünenberger PH; Riniker S J Chem Phys; 2022 Sep; 157(10):104117. PubMed ID: 36109239 [TBL] [Abstract][Full Text] [Related]
6. On the Use of Enveloping Distribution Sampling (EDS) to Compute Free Enthalpy Differences between Different Conformational States of Molecules: Application to 310-, α-, and π-Helices. Lin Z; Liu H; Riniker S; van Gunsteren WF J Chem Theory Comput; 2011 Dec; 7(12):3884-97. PubMed ID: 26598335 [TBL] [Abstract][Full Text] [Related]
7. Relative free-energy calculations for scaffold hopping-type transformations with an automated RE-EDS sampling procedure. Ries B; Normak K; Weiß RG; Rieder S; Barros EP; Champion C; König G; Riniker S J Comput Aided Mol Des; 2022 Feb; 36(2):117-130. PubMed ID: 34978000 [TBL] [Abstract][Full Text] [Related]
9. Efficient Round-Trip Time Optimization for Replica-Exchange Enveloping Distribution Sampling (RE-EDS). Sidler D; Cristòfol-Clough M; Riniker S J Chem Theory Comput; 2017 Jun; 13(6):3020-3030. PubMed ID: 28510459 [TBL] [Abstract][Full Text] [Related]
10. An Alternative to Conventional λ-Intermediate States in Alchemical Free Energy Calculations: λ-Enveloping Distribution Sampling. König G; Glaser N; Schroeder B; Kubincová A; Hünenberger PH; Riniker S J Chem Inf Model; 2020 Nov; 60(11):5407-5423. PubMed ID: 32794763 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Sampling in Free Energy Calculations: Combining SGLD with the Bennett's Acceptance Ratio and Enveloping Distribution Sampling Methods. König G; Miller BT; Boresch S; Wu X; Brooks BR J Chem Theory Comput; 2012 Oct; 8(10):3650-62. PubMed ID: 26593010 [TBL] [Abstract][Full Text] [Related]
12. Evaluating nonpolarizable nucleic acid force fields: a systematic comparison of the nucleobases hydration free energies and chloroform-to-water partition coefficients. Wolf MG; Groenhof G J Comput Chem; 2012 Oct; 33(28):2225-32. PubMed ID: 22782700 [TBL] [Abstract][Full Text] [Related]
13. Absolute binding free energy calculations of CBClip host-guest systems in the SAMPL5 blind challenge. Lee J; Tofoleanu F; Pickard FC; König G; Huang J; Damjanović A; Baek M; Seok C; Brooks BR J Comput Aided Mol Des; 2017 Jan; 31(1):71-85. PubMed ID: 27677749 [TBL] [Abstract][Full Text] [Related]
14. Accelerating Alchemical Free Energy Prediction Using a Multistate Method: Application to Multiple Kinases. Champion C; Gall R; Ries B; Rieder SR; Barros EP; Riniker S J Chem Inf Model; 2023 Nov; 63(22):7133-7147. PubMed ID: 37948537 [TBL] [Abstract][Full Text] [Related]
15. On relation between the free-energy perturbation and Bennett's acceptance ratio methods: Tracing the influence of the energy gap. Luzhkov VB J Chem Phys; 2010 May; 132(19):194104. PubMed ID: 20499948 [TBL] [Abstract][Full Text] [Related]
16. Comparison of enveloping distribution sampling and thermodynamic integration to calculate binding free energies of phenylethanolamine N-methyltransferase inhibitors. Riniker S; Christ CD; Hansen N; Mark AE; Nair PC; van Gunsteren WF J Chem Phys; 2011 Jul; 135(2):024105. PubMed ID: 21766923 [TBL] [Abstract][Full Text] [Related]
17. RestraintMaker: a graph-based approach to select distance restraints in free-energy calculations with dual topology. Ries B; Rieder S; Rhiner C; Hünenberger PH; Riniker S J Comput Aided Mol Des; 2022 Mar; 36(3):175-192. PubMed ID: 35314898 [TBL] [Abstract][Full Text] [Related]
18. Molecular dynamics of DNA: comparison of force fields and terminal nucleotide definitions. Ricci CG; de Andrade AS; Mottin M; Netz PA J Phys Chem B; 2010 Aug; 114(30):9882-93. PubMed ID: 20614923 [TBL] [Abstract][Full Text] [Related]
19. Comparison of free-energy methods using a tripeptide-water model system. Maurer M; Hansen N; Oostenbrink C J Comput Chem; 2018 Oct; 39(26):2226-2242. PubMed ID: 30280398 [TBL] [Abstract][Full Text] [Related]
20. Conformational state-specific free energy differences by one-step perturbation: protein secondary structure preferences of the GROMOS 43A1 and 53A6 force fields. Lin Z; Van Gunsteren WF; Liu H J Comput Chem; 2011 Jul; 32(10):2290-7. PubMed ID: 21541965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]