These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35675808)

  • 1. Fast atomic structure optimization with on-the-fly sparse Gaussian process potentials
    Hajibabaei A; Umer M; Anand R; Ha M; Kim KS
    J Phys Condens Matter; 2022 Jun; 34(34):. PubMed ID: 35675808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active sparse Bayesian committee machine potential for isothermal-isobaric molecular dynamics simulations.
    Willow SY; Kim DG; Sundheep R; Hajibabaei A; Kim KS; Myung CW
    Phys Chem Chem Phys; 2024 Aug; 26(33):22073-22082. PubMed ID: 39113586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Optimization Algorithms in Clusters.
    Srivastava R
    Front Chem; 2021; 9():637286. PubMed ID: 33777900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal Machine Learning Interatomic Potentials: Surveying Solid Electrolytes.
    Hajibabaei A; Kim KS
    J Phys Chem Lett; 2021 Aug; 12(33):8115-8120. PubMed ID: 34410138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast Scanning Probe Microscopy via Machine Learning: Non-Rectangular Scans with Compressed Sensing and Gaussian Process Optimization.
    Kelley KP; Ziatdinov M; Collins L; Susner MA; Vasudevan RK; Balke N; Kalinin SV; Jesse S
    Small; 2020 Sep; 16(37):e2002878. PubMed ID: 32780947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Search for Global Minimum Structures of
    Zhou M; Xu Y; Cui Y; Zhang X; Kong X
    Front Chem; 2021; 9():694156. PubMed ID: 34381759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning enhanced global optimization by clustering local environments to enable bundled atomic energies.
    Meldgaard SA; Kolsbjerg EL; Hammer B
    J Chem Phys; 2018 Oct; 149(13):134104. PubMed ID: 30292199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning transferable atomic forces for large systems from underconverged molecular fragments.
    Herbold M; Behler J
    Phys Chem Chem Phys; 2023 May; 25(18):12979-12989. PubMed ID: 37165873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning of First-Principles Force-Fields for Alkane and Polyene Hydrocarbons.
    Hajibabaei A; Ha M; Pourasad S; Kim J; Kim KS
    J Phys Chem A; 2021 Oct; 125(42):9414-9420. PubMed ID: 34657427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Hessian-based assessment of atomic forces for training machine learning interatomic potentials.
    Herbold M; Behler J
    J Chem Phys; 2022 Mar; 156(11):114106. PubMed ID: 35317596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-the-Fly Machine Learning of Atomic Potential in Density Functional Theory Structure Optimization.
    Jacobsen TL; Jørgensen MS; Hammer B
    Phys Rev Lett; 2018 Jan; 120(2):026102. PubMed ID: 29376690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-range dispersion-inclusive machine learning potentials for structure search and optimization of hybrid organic-inorganic interfaces.
    Westermayr J; Chaudhuri S; Jeindl A; Hofmann OT; Maurer RJ
    Digit Discov; 2022 Aug; 1(4):463-475. PubMed ID: 36091414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer.
    Ko TW; Finkler JA; Goedecker S; Behler J
    Acc Chem Res; 2021 Feb; 54(4):808-817. PubMed ID: 33513012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local-environment-guided selection of atomic structures for the development of machine-learning potentials.
    Li R; Zhou C; Singh A; Pei Y; Henkelman G; Li L
    J Chem Phys; 2024 Feb; 160(7):. PubMed ID: 38380745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning with bond information for local structure optimizations in surface science.
    Garijo Del Río E; Kaappa S; Garrido Torres JA; Bligaard T; Jacobsen KW
    J Chem Phys; 2020 Dec; 153(23):234116. PubMed ID: 33353332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse Gaussian Process Regression-Based Machine Learned First-Principles Force-Fields for Saturated, Olefinic, and Aromatic Hydrocarbons.
    Ha M; Hajibabaei A; Pourasad S; Kim KS
    ACS Phys Chem Au; 2022 May; 2(3):260-264. PubMed ID: 36855568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein structure prediction using basin-hopping.
    Prentiss MC; Wales DJ; Wolynes PG
    J Chem Phys; 2008 Jun; 128(22):225106. PubMed ID: 18554063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic global optimization X: A Python package for optimization of atomistic structures.
    Christiansen MV; Rønne N; Hammer B
    J Chem Phys; 2022 Aug; 157(5):054701. PubMed ID: 35933212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global minimization of gold clusters by combining neural network potentials and the basin-hopping method.
    Ouyang R; Xie Y; Jiang DE
    Nanoscale; 2015 Sep; 7(36):14817-21. PubMed ID: 26308236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.