BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35675809)

  • 1. A light-sensing system in the common ancestor of the fungi.
    Galindo LJ; Milner DS; Gomes SL; Richards TA
    Curr Biol; 2022 Jul; 32(14):3146-3153.e3. PubMed ID: 35675809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus.
    Avelar GM; Schumacher RI; Zaini PA; Leonard G; Richards TA; Gomes SL
    Curr Biol; 2014 Jun; 24(11):1234-40. PubMed ID: 24835457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.
    Scheib U; Stehfest K; Gee CE; Körschen HG; Fudim R; Oertner TG; Hegemann P
    Sci Signal; 2015 Aug; 8(389):rs8. PubMed ID: 26268609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Cyclic GMP-Dependent K+ Channel in the Blastocladiomycete Fungus Blastocladiella emersonii.
    Avelar GM; Glaser T; Leonard G; Richards TA; Ulrich H; Gomes SL
    Eukaryot Cell; 2015 Sep; 14(9):958-63. PubMed ID: 26150416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.
    Gao S; Nagpal J; Schneider MW; Kozjak-Pavlovic V; Nagel G; Gottschalk A
    Nat Commun; 2015 Sep; 6():8046. PubMed ID: 26345128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and monomer/dimer equilibrium for the guanylyl cyclase domain of the optogenetics protein RhoGC.
    Kumar RP; Morehouse BR; Fofana J; Trieu MM; Zhou DH; Lorenz MO; Oprian DD
    J Biol Chem; 2017 Dec; 292(52):21578-21589. PubMed ID: 29118188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo and In Vitro Characterization of Cyclase and Phosphodiesterase Rhodopsins.
    Tian Y; Gao S; Nagel G
    Methods Mol Biol; 2022; 2501():325-338. PubMed ID: 35857236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity of rhodopsin cyclases in zoospore-forming fungi.
    Broser M; Busse W; Spreen A; Reh M; Bernal Sierra YA; Hwang S; Utesch T; Sun H; Hegemann P
    Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2310600120. PubMed ID: 37871207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypothesized evolutionary trends in zoospore ultrastructural characters in Chytridiales (Chytridiomycota).
    Letcher PM; Powell MJ
    Mycologia; 2014; 106(3):379-96. PubMed ID: 24895427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorption and Emission Spectroscopic Investigation of Thermal Dynamics and Photo-Dynamics of the Rhodopsin Domain of the Rhodopsin-Guanylyl Cyclase from the Nematophagous Fungus Catenaria anguillulae.
    Penzkofer A; Scheib U; Stehfest K; Hegemann P
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 28981475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of a Ca(2+)-(*)NO-cGMP signaling pathway controlling zoospore biogenesis in the aquatic fungus Blastocladiella emersonii.
    Vieira AL; Linares E; Augusto O; Gomes SL
    Fungal Genet Biol; 2009 Aug; 46(8):575-84. PubMed ID: 19393757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression, purification, and spectral tuning of RhoGC, a retinylidene/guanylyl cyclase fusion protein and optogenetics tool from the aquatic fungus
    Trieu MM; Devine EL; Lamarche LB; Ammerman AE; Greco JA; Birge RR; Theobald DL; Oprian DD
    J Biol Chem; 2017 Jun; 292(25):10379-10389. PubMed ID: 28473465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-subunit rRNA sequence of the chytridiomycete Blastocladiella emersonii, and implications for the evolution of zoosporic fungi.
    Van der Auwera G; De Wachter R
    J Mol Evol; 1996 Nov; 43(5):476-83. PubMed ID: 8875862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the binding properties and structural stability of an opsin in the chytrid
    Ahrendt SR; Medina EM; Chang CA; Stajich JE
    PeerJ; 2017; 5():e3206. PubMed ID: 28462022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Genome Sequence Assembly of the Phototactic and Optogenetic Model Fungus Blastocladiella emersonii Reveals a Diversified Nucleotide-Cyclase Repertoire.
    Leonard G; Galindo LJ; Milner DS; Avelar GM; Gomes-Vieira AL; Gomes SL; Richards TA
    Genome Biol Evol; 2022 Dec; 14(12):. PubMed ID: 36281075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of guanylate cyclase activity during cytodifferentiation of Blastocladiella emersonii.
    Silverman PM
    Biochem Biophys Res Commun; 1976 May; 70(2):381-8. PubMed ID: 7248
    [No Abstract]   [Full Text] [Related]  

  • 17. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota).
    James TY; Letcher PM; Longcore JE; Mozley-Standridge SE; Porter D; Powell MJ; Griffith GW; Vilgalys R
    Mycologia; 2006; 98(6):860-71. PubMed ID: 17486963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of heat shock on S6 phosphorylation during the development of Blastocladiella emersonii.
    da Silva AM; Juliani MH; Bonato MC
    Mol Cell Biochem; 1987 Nov; 78(1):27-35. PubMed ID: 3454866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The last two pathway-specific enzyme activities of hexosamine biosynthesis are present in Blastocladiella emersonii zoospores prior to germination.
    Selitrennikoff CP; Sonneborn DR
    Biochim Biophys Acta; 1976 Dec; 451(2):408-16. PubMed ID: 999860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi.
    Krishnan A; Almén MS; Fredriksson R; Schiöth HB
    PLoS One; 2012; 7(1):e29817. PubMed ID: 22238661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.