These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 35675815)

  • 1. A conceptual framework for understanding phase separation and addressing open questions and challenges.
    Mittag T; Pappu RV
    Mol Cell; 2022 Jun; 82(12):2201-2214. PubMed ID: 35675815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions.
    Kar M; Dar F; Welsh TJ; Vogel LT; Kühnemuth R; Majumdar A; Krainer G; Franzmann TM; Alberti S; Seidel CAM; Knowles TPJ; Hyman AA; Pappu RV
    Proc Natl Acad Sci U S A; 2022 Jul; 119(28):e2202222119. PubMed ID: 35787038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions.
    Choi JM; Holehouse AS; Pappu RV
    Annu Rev Biophys; 2020 May; 49():107-133. PubMed ID: 32004090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topological Considerations in Biomolecular Condensation.
    Das D; Deniz AA
    Biomolecules; 2023 Jan; 13(1):. PubMed ID: 36671536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting the complexity of biomolecular condensates.
    Swain P; Weber SC
    Biochem Soc Trans; 2020 Dec; 48(6):2591-2602. PubMed ID: 33300985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate helps unmask the differences in driving forces for phase separation versus clustering of FET family proteins in sub-saturated solutions.
    Kar M; Vogel LT; Chauhan G; Ausserwöger H; Welsh TJ; Kamath AR; Knowles TPJ; Hyman AA; Seidel CAM; Pappu RV
    bioRxiv; 2023 Aug; ():. PubMed ID: 37609232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamate helps unmask the differences in driving forces for phase separation versus clustering of FET family proteins in sub-saturated solutions.
    Kar M; Vogel LT; Chauhan G; Ausserwöger H; Welsh TJ; Kamath AR; Knowles TPJ; Hyman AA; Seidel CAM; Pappu RV
    Res Sq; 2023 Sep; ():. PubMed ID: 37790538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase separation in biology and disease-a symposium report.
    Cable J; Brangwynne C; Seydoux G; Cowburn D; Pappu RV; Castañeda CA; Berchowitz LE; Chen Z; Jonikas M; Dernburg A; Mittag T; Fawzi NL
    Ann N Y Acad Sci; 2019 Sep; 1452(1):3-11. PubMed ID: 31199001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developments in describing equilibrium phase transitions of multivalent associative macromolecules.
    Zeng X; Pappu RV
    Curr Opin Struct Biol; 2023 Apr; 79():102540. PubMed ID: 36804705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations.
    Farag M; Cohen SR; Borcherds WM; Bremer A; Mittag T; Pappu RV
    Nat Commun; 2022 Dec; 13(1):7722. PubMed ID: 36513655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins.
    Harmon TS; Holehouse AS; Rosen MK; Pappu RV
    Elife; 2017 Nov; 6():. PubMed ID: 29091028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-specific interactions determine viscoelasticity and aging dynamics of protein condensates.
    Alshareedah I; Borcherds WM; Cohen SR; Singh A; Posey AE; Farag M; Bremer A; Strout GW; Tomares DT; Pappu RV; Mittag T; Banerjee PR
    bioRxiv; 2023 Dec; ():. PubMed ID: 37066350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological condensates form percolated networks with molecular motion properties distinctly different from dilute solutions.
    Shen Z; Jia B; Xu Y; Wessén J; Pal T; Chan HS; Du S; Zhang M
    Elife; 2023 Jun; 12():. PubMed ID: 37261897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The solubility product extends the buffering concept to heterotypic biomolecular condensates.
    Chattaraj A; Blinov ML; Loew LM
    Elife; 2021 Jul; 10():. PubMed ID: 34236318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein conformation and biomolecular condensates.
    Vazquez DS; Toledo PL; Gianotti AR; Ermácora MR
    Curr Res Struct Biol; 2022; 4():285-307. PubMed ID: 36164646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(ADP-ribose) in Condensates: The PARtnership of Phase Separation and Site-Specific Interactions.
    Alemasova EE; Lavrik OI
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designer Condensates: A Toolkit for the Biomolecular Architect.
    Hastings RL; Boeynaems S
    J Mol Biol; 2021 Jun; 433(12):166837. PubMed ID: 33539874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Making the Case for Disordered Proteins and Biomolecular Condensates in Bacteria.
    Cohan MC; Pappu RV
    Trends Biochem Sci; 2020 Aug; 45(8):668-680. PubMed ID: 32456986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides.
    Alshareedah I; Moosa MM; Pham M; Potoyan DA; Banerjee PR
    Nat Commun; 2021 Nov; 12(1):6620. PubMed ID: 34785657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.