These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 35675815)

  • 41. Molecular and environmental determinants of biomolecular condensate formation.
    Villegas JA; Heidenreich M; Levy ED
    Nat Chem Biol; 2022 Dec; 18(12):1319-1329. PubMed ID: 36400992
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of biomolecular condensates and protein phase separation with microfluidic technology.
    Linsenmeier M; Kopp MRG; Stavrakis S; de Mello A; Arosio P
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118823. PubMed ID: 32800925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biological Phase Separation and Biomolecular Condensates in Plants.
    Emenecker RJ; Holehouse AS; Strader LC
    Annu Rev Plant Biol; 2021 Jun; 72():17-46. PubMed ID: 33684296
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Liquid state theory study of the phase behavior and macromolecular scale structure of model biomolecular condensates.
    Shi G; Schweizer KS
    J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37489654
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Time-Dependent Material Properties of Aging Biomolecular Condensates from Different Viscoelasticity Measurements in Molecular Dynamics Simulations.
    Tejedor AR; Collepardo-Guevara R; Ramírez J; Espinosa JR
    J Phys Chem B; 2023 May; 127(20):4441-4459. PubMed ID: 37194953
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatially non-uniform condensates emerge from dynamically arrested phase separation.
    Erkamp NA; Sneideris T; Ausserwöger H; Qian D; Qamar S; Nixon-Abell J; St George-Hyslop P; Schmit JD; Weitz DA; Knowles TPJ
    Nat Commun; 2023 Feb; 14(1):684. PubMed ID: 36755024
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein Phase Separation: New Insights into Carcinogenesis.
    Luo Y; Xiang S; Feng J
    Cancers (Basel); 2022 Dec; 14(23):. PubMed ID: 36497453
    [TBL] [Abstract][Full Text] [Related]  

  • 48. G-Quadruplexes in Nuclear Biomolecular Condensates.
    Pavlova I; Iudin M; Surdina A; Severov V; Varizhuk A
    Genes (Basel); 2023 May; 14(5):. PubMed ID: 37239436
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Liquid-Liquid Phase Separation in Disease.
    Alberti S; Dormann D
    Annu Rev Genet; 2019 Dec; 53():171-194. PubMed ID: 31430179
    [TBL] [Abstract][Full Text] [Related]  

  • 50. HP1-driven phase separation recapitulates the thermodynamics and kinetics of heterochromatin condensate formation.
    Tortora MMC; Brennan LD; Karpen G; Jost D
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2211855120. PubMed ID: 37549295
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Challenges in Imaging Analyses of Biomolecular Condensates in Cells Infected with Influenza A Virus.
    Etibor TA; O'Riain A; Alenquer M; Diwo C; Vale-Costa S; Amorim MJ
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894933
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it.
    Tejedor AR; Sanchez-Burgos I; Estevez-Espinosa M; Garaizar A; Collepardo-Guevara R; Ramirez J; Espinosa JR
    Nat Commun; 2022 Sep; 13(1):5717. PubMed ID: 36175408
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Driving force of biomolecular liquid-liquid phase separation probed by nuclear magnetic resonance spectroscopy.
    Zhang H; Fan W; Nshogoza G; Liu Y; Gao J; Wu J; Shi Y; Tu X; Zhang J; Ruan K
    Biophys Rep; 2022 Apr; 8(2):90-99. PubMed ID: 37287829
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular structure in biomolecular condensates.
    Peran I; Mittag T
    Curr Opin Struct Biol; 2020 Feb; 60():17-26. PubMed ID: 31790873
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomolecular Condensates: Structure, Functions, Methods of Research.
    Gorsheneva NA; Sopova JV; Azarov VV; Grizel AV; Rubel AA
    Biochemistry (Mosc); 2024 Jan; 89(Suppl 1):S205-S223. PubMed ID: 38621751
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Composition-dependent thermodynamics of intracellular phase separation.
    Riback JA; Zhu L; Ferrolino MC; Tolbert M; Mitrea DM; Sanders DW; Wei MT; Kriwacki RW; Brangwynne CP
    Nature; 2020 May; 581(7807):209-214. PubMed ID: 32405004
    [TBL] [Abstract][Full Text] [Related]  

  • 57. LASSI: A lattice model for simulating phase transitions of multivalent proteins.
    Choi JM; Dar F; Pappu RV
    PLoS Comput Biol; 2019 Oct; 15(10):e1007028. PubMed ID: 31634364
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biomolecular condensates and disease pathogenesis.
    Ruan K; Bai G; Fang Y; Li D; Li T; Liu X; Lu B; Lu Q; Songyang Z; Sun S; Wang Z; Zhang X; Zhou W; Zhang H
    Sci China Life Sci; 2024 Sep; 67(9):1792-1832. PubMed ID: 39037698
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mesoscale structure-function relationships in mitochondrial transcriptional condensates.
    Feric M; Sarfallah A; Dar F; Temiakov D; Pappu RV; Misteli T
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2207303119. PubMed ID: 36191226
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Percolation, phase separation, and gelation in fluids and mixtures of spheres and rods.
    Jadrich R; Schweizer KS
    J Chem Phys; 2011 Dec; 135(23):234902. PubMed ID: 22191900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.