These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 35676273)
1. Cost increase in the electricity supply to achieve carbon neutrality in China. Zhuo Z; Du E; Zhang N; Nielsen CP; Lu X; Xiao J; Wu J; Kang C Nat Commun; 2022 Jun; 13(1):3172. PubMed ID: 35676273 [TBL] [Abstract][Full Text] [Related]
2. Cost dynamics of onshore wind energy in the context of China's carbon neutrality target. Chen S; Xiao Y; Zhang C; Lu X; He K; Hao J Environ Sci Ecotechnol; 2024 May; 19():100323. PubMed ID: 38021369 [TBL] [Abstract][Full Text] [Related]
3. Incorporating health co-benefits into technology pathways to achieve China's 2060 carbon neutrality goal: a modelling study. Zhang S; An K; Li J; Weng Y; Zhang S; Wang S; Cai W; Wang C; Gong P Lancet Planet Health; 2021 Nov; 5(11):e808-e817. PubMed ID: 34758346 [TBL] [Abstract][Full Text] [Related]
4. A demonstration concentrating solar power plant in China: Carbon neutrality, energy renewability and policy perspectives. Ye H; Peng H; Li C; Li Y; Li Z; Yang Q; Chen G J Environ Manage; 2023 Feb; 328():117003. PubMed ID: 36508975 [TBL] [Abstract][Full Text] [Related]
5. Using green finance to counteract the adverse effects of COVID-19 pandemic on renewable energy investment-The case of offshore wind power in China. Tu Q; Mo J; Liu Z; Gong C; Fan Y Energy Policy; 2021 Nov; 158():112542. PubMed ID: 34539036 [TBL] [Abstract][Full Text] [Related]
6. Least-cost targets and avoided fossil fuel capacity in India's pursuit of renewable energy. Deshmukh R; Phadke A; Callaway DS Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753476 [TBL] [Abstract][Full Text] [Related]
7. Leveraging Green Ammonia for Resilient and Cost-Competitive Islanded Electricity Generation from Hybrid Solar Photovoltaic-Wind Farms: A Case Study in South Africa. Sagel VN; Rouwenhorst KHR; Faria JA Energy Fuels; 2023 Sep; 37(18):14383-14392. PubMed ID: 37753452 [TBL] [Abstract][Full Text] [Related]
8. Robust capital cost optimization of generation and multitimescale storage requirements for a 100% renewable Australian electricity grid. Shaikh RA; Vowles DJ; Dinovitser A; Allison A; Abbott D PNAS Nexus; 2024 Apr; 3(4):pgae127. PubMed ID: 38577259 [TBL] [Abstract][Full Text] [Related]
9. Assessing the environmental externalities for biomass- and coal-fired electricity generation in China: A supply chain perspective. Wang C; Zhang L; Zhou P; Chang Y; Zhou D; Pang M; Yin H J Environ Manage; 2019 Sep; 246():758-767. PubMed ID: 31228689 [TBL] [Abstract][Full Text] [Related]
10. Assessing the energy transition in China towards carbon neutrality with a probabilistic framework. Zhang S; Chen W Nat Commun; 2022 Jan; 13(1):87. PubMed ID: 35013253 [TBL] [Abstract][Full Text] [Related]
11. How to develop renewable power in China? A cost-effective perspective. Cong RG; Shen S ScientificWorldJournal; 2014; 2014():946932. PubMed ID: 24578672 [TBL] [Abstract][Full Text] [Related]
12. A case study of Australia's emissions reduction policies - An electricity planner's perspective. Byrom S; Bongers GD; Dargusch P; Garnett A; Boston A J Environ Manage; 2020 Dec; 276():111323. PubMed ID: 32932067 [TBL] [Abstract][Full Text] [Related]
13. Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification. Chien F; Ngo QT; Hsu CC; Chau KY; Mohsin M Environ Sci Pollut Res Int; 2021 Dec; 28(46):65960-65973. PubMed ID: 34327644 [TBL] [Abstract][Full Text] [Related]
14. Wind and Solar Resource Droughts in California Highlight the Benefits of Long-Term Storage and Integration with the Western Interconnect. Rinaldi KZ; Dowling JA; Ruggles TH; Caldeira K; Lewis NS Environ Sci Technol; 2021 May; 55(9):6214-6226. PubMed ID: 33822592 [TBL] [Abstract][Full Text] [Related]
15. Electricity generation: options for reduction in carbon emissions. Whittington HW Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490 [TBL] [Abstract][Full Text] [Related]
16. Impacts of renewable electricity standard and Renewable Energy Certificates on renewable energy investments and carbon emissions. Zhu Q; Chen X; Song M; Li X; Shen Z J Environ Manage; 2022 Mar; 306():114495. PubMed ID: 35038670 [TBL] [Abstract][Full Text] [Related]
17. Costs of solar and wind power variability for reducing CO2 emissions. Lueken C; Cohen GE; Apt J Environ Sci Technol; 2012 Sep; 46(17):9761-7. PubMed ID: 22877159 [TBL] [Abstract][Full Text] [Related]
18. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Hertwich EG; Gibon T; Bouman EA; Arvesen A; Suh S; Heath GA; Bergesen JD; Ramirez A; Vega MI; Shi L Proc Natl Acad Sci U S A; 2015 May; 112(20):6277-82. PubMed ID: 25288741 [TBL] [Abstract][Full Text] [Related]
19. Development and bottlenecks of renewable electricity generation in China: a critical review. Hu Y; Cheng H Environ Sci Technol; 2013 Apr; 47(7):3044-56. PubMed ID: 23445126 [TBL] [Abstract][Full Text] [Related]
20. Achieving an 80% carbon-free electricity system in China by 2035. Abhyankar N; Lin J; Kahrl F; Yin S; Paliwal U; Liu X; Khanna N; Luo Q; Wooley D; O'Boyle M; Ashmoore O; Orvis R; Solomon M; Phadke A iScience; 2022 Oct; 25(10):105180. PubMed ID: 36217546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]