These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35676298)

  • 1. Optomechanical crystal with bound states in the continuum.
    Liu S; Tong H; Fang K
    Nat Commun; 2022 Jun; 13(1):3187. PubMed ID: 35676298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical bound states in the continuum for macroscopic optomechanics.
    Zhao M; Fang K
    Opt Express; 2019 Apr; 27(7):10138-10151. PubMed ID: 31045159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compact ring resonators of silicon nanorods for strong optomechanical interaction.
    Wang F; Yuan J; Yang S; Potapov AA; Zhang X; Liang Z; Feng T
    Nanoscale; 2023 Mar; 15(10):4982-4990. PubMed ID: 36786450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab.
    Safavi-Naeini AH; Painter O
    Opt Express; 2010 Jul; 18(14):14926-43. PubMed ID: 20639979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Photon Cooling in Microwave Magnetomechanics.
    Zoepfl D; Juan ML; Schneider CMF; Kirchmair G
    Phys Rev Lett; 2020 Jul; 125(2):023601. PubMed ID: 32701311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersive optomechanics of supercavity modes in high-index disks.
    Mercadé L; Barreda Á; Martínez A
    Opt Lett; 2020 Sep; 45(18):5238-5241. PubMed ID: 32932500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong optomechanical coupling in chain-like waveguides of silicon nanoparticles with quasi-bound states in the continuum.
    Yang S; Wan L; Wang F; Potapov AA; Feng T
    Opt Lett; 2021 Sep; 46(18):4466-4469. PubMed ID: 34525023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brillouin Optomechanics in Coupled Silicon Microcavities.
    Espinel YA; Santos FG; Luiz GO; Alegre TP; Wiederhecker GS
    Sci Rep; 2017 Mar; 7():43423. PubMed ID: 28262814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slot-Mode Optomechanical Crystals: A Versatile Platform for Multimode Optomechanics.
    Grutter KE; Davanço MI; Srinivasan K
    Optica; 2015; 2(11):994-1001. PubMed ID: 26807432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity.
    Singh V; Bosman SJ; Schneider BH; Blanter YM; Castellanos-Gomez A; Steele GA
    Nat Nanotechnol; 2014 Oct; 9(10):820-4. PubMed ID: 25150717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optomechanical dissipative solitons.
    Zhang J; Peng B; Kim S; Monifi F; Jiang X; Li Y; Yu P; Liu L; Liu YX; Alù A; Yang L
    Nature; 2021 Dec; 600(7887):75-80. PubMed ID: 34853455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.
    He L; Li H; Li M
    Sci Adv; 2016 Sep; 2(9):e1600485. PubMed ID: 27626072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A one-dimensional optomechanical crystal with a complete phononic band gap.
    Gomis-Bresco J; Navarro-Urrios D; Oudich M; El-Jallal S; Griol A; Puerto D; Chavez E; Pennec Y; Djafari-Rouhani B; Alzina F; Martínez A; Torres CM
    Nat Commun; 2014 Jul; 5():4452. PubMed ID: 25043827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of mechanical bound states in the continuum in an optomechanical microresonator.
    Yu Y; Xi X; Sun X
    Light Sci Appl; 2022 Nov; 11(1):328. PubMed ID: 36400757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional optomechanical crystal cavity with high quantum cooperativity.
    Ren H; Matheny MH; MacCabe GS; Luo J; Pfeifer H; Mirhosseini M; Painter O
    Nat Commun; 2020 Jul; 11(1):3373. PubMed ID: 32632132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range.
    Lamberti FR; Yao Q; Lanco L; Nguyen DT; Esmann M; Fainstein A; Sesin P; Anguiano S; Villafañe V; Bruchhausen A; Senellart P; Favero I; Lanzillotti-Kimura ND
    Opt Express; 2017 Oct; 25(20):24437-24447. PubMed ID: 29041388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling microwave photons to a mechanical resonator using quantum interference.
    Rodrigues IC; Bothner D; Steele GA
    Nat Commun; 2019 Nov; 10(1):5359. PubMed ID: 31767836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity.
    Hönl S; Popoff Y; Caimi D; Beccari A; Kippenberg TJ; Seidler P
    Nat Commun; 2022 Apr; 13(1):2065. PubMed ID: 35440549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong optomechanical interactions in a sliced photonic crystal nanobeam.
    Leijssen R; Verhagen E
    Sci Rep; 2015 Nov; 5():15974. PubMed ID: 26522751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a quasi-2D photonic crystal optomechanical cavity with tunable, large x
    Kalaee M; Paraïso TK; Pfeifer H; Painter O
    Opt Express; 2016 Sep; 24(19):21308-28. PubMed ID: 27661874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.