These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35676507)

  • 1. Enhancing the precision limits of interferometric satellite geodesy missions.
    Conlon LO; Michel T; Guccione G; McKenzie K; Assad SM; Lam PK
    NPJ Microgravity; 2022 Jun; 8(1):21. PubMed ID: 35676507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Satellite Gravimetry: A Review of Its Realization.
    Flechtner F; Reigber C; Rummel R; Balmino G
    Surv Geophys; 2021; 42(5):1029-1074. PubMed ID: 34642516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute frequency readout derived from ULE cavity for next generation geodesy missions.
    Rees ER; Wade AR; Sutton AJ; Spero RE; Shaddock DA; Mckenzie K
    Opt Express; 2021 Aug; 29(16):26014-26027. PubMed ID: 34614915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method and its validation for measuring the absolute time-delay of the read-out system of a space electrostatic accelerometer.
    Li D; Chang X; Yu J; Bai Y; Wang C; Zhou Z
    Rev Sci Instrum; 2023 Mar; 94(3):034703. PubMed ID: 37012754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-Axis Optical Bench for Laser Ranging Instruments in Future Gravity Missions.
    Yang Y; Yamamoto K; Dovale Álvarez M; Wei D; Esteban Delgado JJ; Müller V; Jia J; Heinzel G
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gravitational wave detection using laser interferometry beyond the standard quantum limit.
    Heurs M
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST.
    Bai Y; Li Z; Hu M; Liu L; Qu S; Tan D; Tu H; Wu S; Yin H; Li H; Zhou Z
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28832538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drift of the Earth's Principal Axes of Inertia from GRACE and Satellite Laser Ranging Data.
    Ferrándiz JM; Modiri S; Belda S; Barkin M; Bloßfeld M; Heinkelmann R; Schuh H
    Remote Sens (Basel); 2020 Jan; 12(2):314. PubMed ID: 36081850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth's dragging of inertial frames.
    Ciufolini I; Paolozzi A; Pavlis EC; Koenig R; Ries J; Gurzadyan V; Matzner R; Penrose R; Sindoni G; Paris C; Khachatryan H; Mirzoyan S
    Eur Phys J C Part Fields; 2016; 76(3):120. PubMed ID: 27471430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shot-noise-limit performance of a weak-light phase readout system for intersatellite heterodyne interferometry.
    Jiang YZ; Jin XL; Yeh HC; Liang YR
    Opt Express; 2021 Jun; 29(12):18336-18350. PubMed ID: 34154092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Satellite Laser-Ranging as a Probe of Fundamental Physics.
    Ciufolini I; Matzner R; Paolozzi A; Pavlis EC; Sindoni G; Ries J; Gurzadyan V; Koenig R
    Sci Rep; 2019 Nov; 9(1):15881. PubMed ID: 31685911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental scheme and noise analysis of weak-light phase locked loop for large-scale intersatellite laser interferometer.
    Liang YR; Feng YJ; Xiao GY; Jiang YZ; Li L; Jin XL
    Rev Sci Instrum; 2021 Dec; 92(12):124501. PubMed ID: 34972474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of GRACE Mass Change Time Series Using a Bayesian Framework.
    Rateb A; Sun A; Scanlon BR; Save H; Hasan E
    Earth Space Sci; 2022 Jul; 9(7):e2021EA002162. PubMed ID: 36032558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser beam steering for GRACE Follow-On intersatellite interferometry.
    Schütze D; Stede G; Müller V; Gerberding O; Bandikova T; Sheard BS; Heinzel G; Danzmann K
    Opt Express; 2014 Oct; 22(20):24117-32. PubMed ID: 25321987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-calibration method of the bias of a space electrostatic accelerometer.
    Qu SB; Xia XM; Bai YZ; Wu SC; Zhou ZB
    Rev Sci Instrum; 2016 Nov; 87(11):114502. PubMed ID: 27910446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lunar laser ranging: a continuing legacy of the apollo program.
    Dickey JO; Bender PL; Faller JE; Newhall XX; Ricklefs RL; Ries JG; Shelus PJ; Veillet C; Whipple AL; Wiant JR; Williams JG; Yoder CF
    Science; 1994 Jul; 265(5171):482-90. PubMed ID: 17781305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Predefined-Time Control for the Laser Acquisition in Space Gravitational Wave Detection Mission.
    Zhang J; Wang P; Lian X; Lu L; Liu W
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-Delay Interferometry.
    Tinto M; Dhurandhar SV
    Living Rev Relativ; 2014; 17(1):6. PubMed ID: 28163627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of quantum back action in the audio band at room temperature.
    Cripe J; Aggarwal N; Lanza R; Libson A; Singh R; Heu P; Follman D; Cole GD; Mavalvala N; Corbitt T
    Nature; 2019 Apr; 568(7752):364-367. PubMed ID: 30911169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of a Multi-Satellite Dynamic Mission Scheduling Model Based on Mission Priority in Emergency Response.
    Cui J; Zhang X
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30909562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.