These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3567655)

  • 1. Consequences of damage to the sensorimotor cortex in neonatal and adult cats. I. Sparing and recovery of function.
    Leonard CT; Goldberger ME
    Brain Res; 1987 Mar; 429(1):1-14. PubMed ID: 3567655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infant lesion effect: II. Sparing and recovery of function after spinal cord damage in newborn and adult cats.
    Bregman BS; Goldberger ME
    Brain Res; 1983 Aug; 285(2):119-35. PubMed ID: 6616260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consequences of damage to the sensorimotor cortex in neonatal and adult cats. II. Maintenance of exuberant projections.
    Leonard CT; Goldberger ME
    Brain Res; 1987 Mar; 429(1):15-30. PubMed ID: 3567659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infant lesion effect: I. Development of motor behavior following neonatal spinal cord damage in cats.
    Bregman BS; Goldberger ME
    Brain Res; 1983 Aug; 285(2):103-17. PubMed ID: 6604564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of function after spinal cord hemisection in newborn and adult rats: differential effects on reflex and locomotor function.
    Kunkel-Bagden E; Dai HN; Bregman BS
    Exp Neurol; 1992 Apr; 116(1):40-51. PubMed ID: 1559563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infant lesion effect: III. Anatomical correlates of sparing and recovery of function after spinal cord damage in newborn and adult cats.
    Bregman BS; Goldberger ME
    Brain Res; 1983 Aug; 285(2):137-54. PubMed ID: 6616261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development and recovery of motor function in spinal cats. I. The infant lesion effect.
    Robinson GA; Goldberger ME
    Exp Brain Res; 1986; 62(2):373-86. PubMed ID: 3709720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development and recovery of motor function in spinal cats. II. Pharmacological enhancement of recovery.
    Robinson GA; Goldberger ME
    Exp Brain Res; 1986; 62(2):387-400. PubMed ID: 3709721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms contributing to sparing of function following neonatal damage to spinal pathways.
    Goldberger ME
    Neurochem Pathol; 1986 Dec; 5(3):289-307. PubMed ID: 3306475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-lesion transcommissural olivocerebellar reinnervation improves motor function following unilateral pedunculotomy in the neonatal rat.
    Dixon KJ; Hilber W; Speare S; Willson ML; Bower AJ; Sherrard RM
    Exp Neurol; 2005 Dec; 196(2):254-65. PubMed ID: 16125176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomical plasticity and sparing of function after spinal cord damage in neonatal cats.
    Bregman BS; Goldberger ME
    Science; 1982 Aug; 217(4559):553-5. PubMed ID: 7089581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-sensitive enhancement of motor learning with the less-affected forelimb after unilateral sensorimotor cortex lesions in rats.
    Hsu JE; Jones TA
    Eur J Neurosci; 2005 Oct; 22(8):2069-80. PubMed ID: 16262644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor behavior and neural changes following perinatal and adult-onset brain damage: implications for therapeutic interventions.
    Leonard CT
    Phys Ther; 1994 Aug; 74(8):753-67. PubMed ID: 8047563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods to assess the development and recovery of locomotor function after spinal cord injury in rats.
    Kunkel-Bagden E; Dai HN; Bregman BS
    Exp Neurol; 1993 Feb; 119(2):153-64. PubMed ID: 8432357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sparing of skilled forelimb reaching and corticospinal projections after neonatal motor cortex removal or hemidecortication in the rat: support for the Kennard doctrine.
    Whishaw IQ; Kolb B
    Brain Res; 1988 Jun; 451(1-2):97-114. PubMed ID: 3251605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deficits and recovery of body stabilization during acrobatic locomotion after focal lesion to the somatosensory cortex: a kinematic analysis combined with cortical mapping.
    Xerri C; Benelhadj M; Harlay F
    Arch Ital Biol; 2004 May; 142(3):217-36. PubMed ID: 15266656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Structural-functional reorganization of the brain after sequential removal of the regions of the motor cortex in cats and dogs].
    Belenkov NIu; Lassi NI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1982; 32(5):845-51. PubMed ID: 7158024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Physiologic analysis of the effect of micropolarization on trace processes].
    Vartanian GA; Lokhov MI; Popova LA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1978; 28(3):589-98. PubMed ID: 676508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyramidal tract lesions and movement-associated cortical recruitment in patients with MS.
    Rocca MA; Gallo A; Colombo B; Falini A; Scotti G; Comi G; Filippi M
    Neuroimage; 2004 Sep; 23(1):141-7. PubMed ID: 15325360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Stages in the development of interrelations between autogenic and reflex motor mechanisms in the ontogeny of homeotherms].
    Bursian AV
    Usp Fiziol Nauk; 1982; 13(1):109-27. PubMed ID: 7039166
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.