BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35676768)

  • 41. Fluorescence lifetime imaging microscopy: two-dimensional distribution measurement of fluorescence lifetime.
    Fujiwara M; Cieslik W
    Methods Enzymol; 2006; 414():633-42. PubMed ID: 17110215
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Developing and Testing a Bayesian Analysis of Fluorescence Lifetime Measurements.
    Kaye B; Foster PJ; Yoo TY; Needleman DJ
    PLoS One; 2017; 12(1):e0169337. PubMed ID: 28060890
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition.
    Padilla-Parra S; Audugé N; Lalucque H; Mevel JC; Coppey-Moisan M; Tramier M
    Biophys J; 2009 Oct; 97(8):2368-76. PubMed ID: 19843469
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Real-time fluorescence lifetime imaging system with a 32 x 32 0.13microm CMOS low dark-count single-photon avalanche diode array.
    Li DU; Arlt J; Richardson J; Walker R; Buts A; Stoppa D; Charbon E; Henderson R
    Opt Express; 2010 May; 18(10):10257-69. PubMed ID: 20588879
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced FRET contrast in lifetime imaging.
    Spriet C; Trinel D; Riquet F; Vandenbunder B; Usson Y; Heliot L
    Cytometry A; 2008 Aug; 73(8):745-53. PubMed ID: 18496850
    [TBL] [Abstract][Full Text] [Related]  

  • 46. pawFLIM: reducing bias and uncertainty to enable lower photon count in FLIM experiments.
    Silberberg M; Grecco HE
    Methods Appl Fluoresc; 2017 Jun; 5(2):024016. PubMed ID: 28649965
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimization of Advanced Live-Cell Imaging through Red/Near-Infrared Dye Labeling and Fluorescence Lifetime-Based Strategies.
    Bénard M; Schapman D; Chamot C; Dubois F; Levallet G; Komuro H; Galas L
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681761
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Generative adversarial network enables rapid and robust fluorescence lifetime image analysis in live cells.
    Chen YI; Chang YJ; Liao SC; Nguyen TD; Yang J; Kuo YA; Hong S; Liu YL; Rylander HG; Santacruz SR; Yankeelov TE; Yeh HC
    Commun Biol; 2022 Jan; 5(1):18. PubMed ID: 35017629
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FLIM data analysis based on Laguerre polynomial decomposition and machine-learning.
    Guo S; Silge A; Bae H; Tolstik T; Meyer T; Matziolis G; Schmitt M; Popp J; Bocklitz T
    J Biomed Opt; 2021 Jan; 26(2):. PubMed ID: 33415850
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fast single-cell biochemistry: theory, open source microscopy and applications.
    Trinh AL; Ber S; Howitt A; Valls PO; Fries MW; Venkitaraman AR; Esposito A
    Methods Appl Fluoresc; 2019 Aug; 7(4):044001. PubMed ID: 31422954
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluorescence lifetime imaging microscopy in the medical sciences.
    Ebrecht R; Don Paul C; Wouters FS
    Protoplasma; 2014 Mar; 251(2):293-305. PubMed ID: 24390249
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photon efficiency optimization in time-correlated single photon counting technique for fluorescence lifetime imaging systems.
    Turgeman L; Fixler D
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1571-9. PubMed ID: 23322753
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Automated analysis of fluorescence lifetime imaging microscopy (FLIM) data based on the Laguerre deconvolution method.
    Pande P; Jo JA
    IEEE Trans Biomed Eng; 2011 Jan; 58(1):172-81. PubMed ID: 20934946
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physiological fluorescence lifetime imaging microscopy improves Förster resonance energy transfer detection in living cells.
    Chang CW; Wu M; Merajver SD; Mycek MA
    J Biomed Opt; 2009; 14(6):060502. PubMed ID: 20059233
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Statistical analysis and optimization of frequency-domain fluorescence lifetime imaging microscopy using homodyne lock-in detection.
    Lin Y; Gmitro AF
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):1145-55. PubMed ID: 20448782
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fluorescence lifetime imaging--techniques and applications.
    Becker W
    J Microsc; 2012 Aug; 247(2):119-36. PubMed ID: 22621335
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantitative Live Cell FLIM Imaging in Three Dimensions.
    Le Marois A; Suhling K
    Adv Exp Med Biol; 2017; 1035():31-48. PubMed ID: 29080129
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fast bi-exponential fluorescence lifetime imaging analysis methods.
    Li DD; Yu H; Chen Y
    Opt Lett; 2015 Feb; 40(3):336-9. PubMed ID: 25680041
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Can we use rapid lifetime determination for fast, fluorescence lifetime based, metabolic imaging? Precision and accuracy of double-exponential decay measurements with low total counts.
    Silva SF; Domingues JP; Morgado AM
    PLoS One; 2019; 14(5):e0216894. PubMed ID: 31086413
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-dimensional time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to detect FRET in cells.
    Duncan RR; Bergmann A; Cousin MA; Apps DK; Shipston MJ
    J Microsc; 2004 Jul; 215(Pt 1):1-12. PubMed ID: 15230870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.