These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 35677296)

  • 1. Mg-, Zn-, and Fe-Based Alloys With Antibacterial Properties as Orthopedic Implant Materials.
    Wang N; Ma Y; Shi H; Song Y; Guo S; Yang S
    Front Bioeng Biotechnol; 2022; 10():888084. PubMed ID: 35677296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials.
    Jiao J; Zhang S; Qu X; Yue B
    Front Cell Infect Microbiol; 2021; 11():693939. PubMed ID: 34277473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31.
    Zou YH; Wang J; Cui LY; Zeng RC; Wang QZ; Han QX; Qiu J; Chen XB; Chen DC; Guan SK; Zheng YF
    Acta Biomater; 2019 Oct; 98():196-214. PubMed ID: 31154057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance.
    Salahshoor M; Guo Y
    Materials (Basel); 2012 Jan; 5(1):135-155. PubMed ID: 28817036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation.
    Qu X; Yang H; Jia B; Yu Z; Zheng Y; Dai K
    Acta Biomater; 2020 Nov; 117():400-417. PubMed ID: 33007485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research status and development of biodegradable zinc alloy as orthopedics implant].
    Zhang T; Liu Y; Wang W; Zhao D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Jun; 40(3):589-594. PubMed ID: 37380401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications.
    Lin J; Tong X; Shi Z; Zhang D; Zhang L; Wang K; Wei A; Jin L; Lin J; Li Y; Wen C
    Acta Biomater; 2020 Apr; 106():410-427. PubMed ID: 32068137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances on the development of magnesium alloys for biodegradable implants.
    Chen Y; Xu Z; Smith C; Sankar J
    Acta Biomater; 2014 Nov; 10(11):4561-4573. PubMed ID: 25034646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of degradation behaviour and biocompatibility of Zn-Fe alloy prepared by electrodeposition.
    He J; Li DW; He FL; Liu YY; Liu YL; Zhang CY; Ren F; Ye YJ; Deng XD; Yin DC
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111295. PubMed ID: 32919656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comprehensive Review of the Current Research Status of Biodegradable Zinc Alloys and Composites for Biomedical Applications.
    Kong L; Heydari Z; Lami GH; Saberi A; Baltatu MS; Vizureanu P
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances on biodegradable zinc-silver-based alloys for biomedical applications.
    Xiao X; Liu E; Shao J; Ge S
    J Appl Biomater Funct Mater; 2021; 19():22808000211062407. PubMed ID: 34903075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable magnesium alloys as temporary orthopaedic implants: a review.
    Kamrani S; Fleck C
    Biometals; 2019 Apr; 32(2):185-193. PubMed ID: 30659451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications.
    Jia B; Yang H; Han Y; Zhang Z; Qu X; Zhuang Y; Wu Q; Zheng Y; Dai K
    Acta Biomater; 2020 May; 108():358-372. PubMed ID: 32165194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current status and perspectives of zinc-based absorbable alloys for biomedical applications.
    Hernández-Escobar D; Champagne S; Yilmazer H; Dikici B; Boehlert CJ; Hermawan H
    Acta Biomater; 2019 Oct; 97():1-22. PubMed ID: 31351253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility of magnesium-zinc alloy in biodegradable orthopedic implants.
    Chen D; He Y; Tao H; Zhang Y; Jiang Y; Zhang X; Zhang S
    Int J Mol Med; 2011 Sep; 28(3):343-8. PubMed ID: 21617843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro cytocompatibility, hemocompatibility and antibacterial properties of biodegradable Zn-Cu-Fe alloys for cardiovascular stents applications.
    Yue R; Niu J; Li Y; Ke G; Huang H; Pei J; Ding W; Yuan G
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111007. PubMed ID: 32487410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Mg-xLi-Zn alloys for potential application of biodegradable bone implant materials.
    Li J; Zhou P; Wang L; Hou Y; Zhang X; Zhu S; Guan S
    J Mater Sci Mater Med; 2021 Apr; 32(4):43. PubMed ID: 33825086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable ternary Zn-3Ge-0.5X (X=Cu, Mg, and Fe) alloys for orthopedic applications.
    Lin J; Tong X; Sun Q; Luan Y; Zhang D; Shi Z; Wang K; Lin J; Li Y; Dargusch M; Wen C
    Acta Biomater; 2020 Oct; 115():432-446. PubMed ID: 32853807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative biomechanical and radiological characterization of osseointegration of a biodegradable magnesium alloy pin and a copolymeric control for osteosynthesis.
    Lindtner RA; Castellani C; Tangl S; Zanoni G; Hausbrandt P; Tschegg EK; Stanzl-Tschegg SE; Weinberg AM
    J Mech Behav Biomed Mater; 2013 Dec; 28():232-43. PubMed ID: 24001403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications.
    Sikora-Jasinska M; Mostaed E; Mostaed A; Beanland R; Mantovani D; Vedani M
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1170-1181. PubMed ID: 28531993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.