These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35677667)

  • 1. Osteoblastic cell response to Al
    Bahraminasab M; Arab S; Ghaffari S
    Bioimpacts; 2022; 12(3):247-259. PubMed ID: 35677667
    [No Abstract]   [Full Text] [Related]  

  • 2. In vivo performance of Al
    Bahraminasab M; Arab S; Safari M; Talebi A; Kavakebian F; Doostmohammadi N
    J Orthop Surg Res; 2021 Jan; 16(1):79. PubMed ID: 33482866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrosion of Al
    Bahraminasab M; Bozorg M; Ghaffari S; Kavakebian F
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():200-211. PubMed ID: 31146991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering.
    Mondal D; Nguyen L; Oh IH; Lee BT
    J Biomed Mater Res A; 2013 May; 101(5):1489-501. PubMed ID: 23135893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoblastic cell behaviour on modified titanium surfaces.
    Lukaszewska-Kuska M; Wirstlein P; Majchrowski R; Dorocka-Bobkowska B
    Micron; 2018 Feb; 105():55-63. PubMed ID: 29179009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Al
    Bahraminasab M; Ghaffari S; Eslami-Shahed H
    J Mech Behav Biomed Mater; 2017 Aug; 72():82-89. PubMed ID: 28463814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications.
    Yang H; Qu X; Lin W; Wang C; Zhu D; Dai K; Zheng Y
    Acta Biomater; 2018 Apr; 71():200-214. PubMed ID: 29530820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoblastic cell behaviour on different titanium implant surfaces.
    Le Guehennec L; Lopez-Heredia MA; Enkel B; Weiss P; Amouriq Y; Layrolle P
    Acta Biomater; 2008 May; 4(3):535-43. PubMed ID: 18226985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of calcium pyrophosphate on microstructural evolution and in vitro biocompatibility of Ti-35Nb-7Zr composite by spark plasma sintering.
    Zhang L; Tan J; He ZY; Jiang YH
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():8-15. PubMed ID: 29853150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fretting corrosion behaviour of Ti-6Al-4V reinforced with zirconia in foetal bovine serum.
    Semetse L; Obadele BA; Raganya L; Geringer J; Olubambi PA
    J Mech Behav Biomed Mater; 2019 Dec; 100():103392. PubMed ID: 31430704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Approach by Spark Plasma Sintering to the Improvement of Mechanical Properties of Titanium Carbonitride-Reinforced Alumina Ceramics.
    Szutkowska M; Podsiadło M; Sadowski T; Figiel P; Boniecki M; Pietras D; Polczyk T
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33802397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of composition on in vitro degradability of Ti-Mg metal-metal composites.
    Ouyang S; Liu Y; Huang Q; Gan Z; Tang H
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110327. PubMed ID: 31761167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro bioactivity and cytocompatibility properties of spark plasma sintered HA-Ti composites.
    Kumar A; Dhara S; Biswas K; Basu B
    J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):223-36. PubMed ID: 23281190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Thymosin beta4 on the Differentiation and Mineralization of MC3T3-E1 Cell on a Titanium Surface.
    Jeong SJ; Jeong MJ
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1979-83. PubMed ID: 27433712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoblastic cell response to spark plasma-sintered zirconia/titanium cermets.
    Fernandez-Garcia E; Guillem-Marti J; Gutierrez-Gonzalez CF; Fernandez A; Ginebra MP; Lopez-Esteban S
    J Biomater Appl; 2015 Jan; 29(6):813-23. PubMed ID: 25145987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility assessment of spark plasma-sintered alumina-titanium cermets.
    Guzman R; Fernandez-García E; Gutierrez-Gonzalez CF; Fernandez A; Lopez-Lacomba JL; Lopez-Esteban S
    J Biomater Appl; 2016 Jan; 30(6):759-69. PubMed ID: 25956565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces.
    Park JW; Kim YJ; Jang JH
    Clin Oral Implants Res; 2010 Apr; 21(4):398-408. PubMed ID: 20128830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative in vitro study regarding the biocompatibility of titanium-base composites infiltrated with hydroxyapatite or silicatitanate.
    Brie IC; Soritau O; Dirzu N; Berce C; Vulpoi A; Popa C; Todea M; Simon S; Perde-Schrepler M; Virag P; Barbos O; Chereches G; Berce P; Cernea V
    J Biol Eng; 2014; 8():14. PubMed ID: 24987458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure evolution, mechanical properties, and enhanced bioactivity of Ti-13Nb-13Zr based calcium pyrophosphate composites for biomedical applications.
    Hu H; Zhang L; He Z; Jiang Y; Tan J
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():279-287. PubMed ID: 30813028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.