These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35677831)

  • 1. Dynamic Cloth Manipulation Considering Variable Stiffness and Material Change Using Deep Predictive Model With Parametric Bias.
    Kawaharazuka K; Miki A; Bando M; Okada K; Inaba M
    Front Neurorobot; 2022; 16():890695. PubMed ID: 35677831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-Driven Robotic Manipulation of Cloth-like Deformable Objects: The Present, Challenges and Future Prospects.
    Kadi HA; Terzić K
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control.
    Liu C; Gao J; Bi Y; Shi X; Tian D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human inspired fall arrest strategy for humanoid robots based on stiffness ellipsoid optimisation.
    Cui D; Peers C; Wang G; Chen Z; Richardson R; Zhou C
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34348251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and Flexible Multi-Step Cloth Manipulation Planning Using an Encode-Manipulate-Decode Network (EM*D Net).
    Arnold S; Yamazaki K
    Front Neurorobot; 2019; 13():22. PubMed ID: 31214008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carved Turn Control with Gate Vision Recognition of a Humanoid Robot for Giant Slalom Skiing on Ski Slopes.
    Park C; Kim B; Kim Y; Eum Y; Song H; Yoon D; Moon J; Han J
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating patterns of dynamic deformation elicits the impression of cloth with varying stiffness.
    Bi W; Jin P; Nienborg H; Xiao B
    J Vis; 2019 May; 19(5):18. PubMed ID: 31112239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model.
    Ito M; Noda K; Hoshino Y; Tani J
    Neural Netw; 2006 Apr; 19(3):323-37. PubMed ID: 16618536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloth manipulation planning on basis of mesh representations with incomplete domain knowledge and voxel-to-mesh estimation.
    Arnold S; Tanaka D; Yamazaki K
    Front Neurorobot; 2022; 16():1045747. PubMed ID: 36687204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model.
    Gil Ó; Garrell A; Sanfeliu A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robot DE NIRO: A Human-Centered, Autonomous, Mobile Research Platform for Cognitively-Enhanced Manipulation.
    Falck F; Doshi S; Tormento M; Nersisyan G; Smuts N; Lingi J; Rants K; Saputra RP; Wang K; Kormushev P
    Front Robot AI; 2020; 7():66. PubMed ID: 33501234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anthropomorphism of Robots: Study of Appearance and Agency.
    Crowell CR; Deska JC; Villano M; Zenk J; Roddy JT
    JMIR Hum Factors; 2019 May; 6(2):e12629. PubMed ID: 31094323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Concept for Safe, Stiffness-Controllable Robot Links.
    Stilli A; Wurdemann HA; Althoefer K
    Soft Robot; 2017 Mar; 4(1):16-22. PubMed ID: 29182102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and control of a pneumatic musculoskeletal biped robot.
    Zang X; Liu Y; Liu X; Zhao J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S443-54. PubMed ID: 27163303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The eMOSAIC model for humanoid robot control.
    Sugimoto N; Morimoto J; Hyon SH; Kawato M
    Neural Netw; 2012 May; 29-30():8-19. PubMed ID: 22366503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamically variable negative stiffness structures.
    Churchill CB; Shahan DW; Smith SP; Keefe AC; McKnight GP
    Sci Adv; 2016 Feb; 2(2):e1500778. PubMed ID: 26989771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacing Soft and Hard: A Spring Reinforced Actuator.
    Fu HC; Ho JDL; Lee KH; Hu YC; Au SKW; Cho KJ; Sze KY; Kwok KW
    Soft Robot; 2020 Feb; 7(1):44-58. PubMed ID: 31613702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.