These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Complement C4-A and Plasminogen as Potential Biomarkers for Prediction of Papillary Thyroid Carcinoma. Wang Y; Zhou S; Wang D; Wei T; Zhu J; Li Z Front Endocrinol (Lausanne); 2021; 12():737638. PubMed ID: 34803909 [TBL] [Abstract][Full Text] [Related]
45. A diagnostic model based on DNA methylation haplotype block characteristics for identifying papillary thyroid carcinoma from thyroid adenoma. Xu D; Lai Y; Liu H; Li H; Feng N; Liu Y; Gong C; Zhang Y; Zhou J; Shen Y Transl Res; 2024 Feb; 264():76-84. PubMed ID: 37863284 [TBL] [Abstract][Full Text] [Related]
46. SuperSonic shear imaging for the differentiation between benign and malignant thyroid nodules: a meta-analysis. Chen Y; Dong B; Jiang Z; Cai Q; Huang L; Huang H J Endocrinol Invest; 2022 Jul; 45(7):1327-1339. PubMed ID: 35229278 [TBL] [Abstract][Full Text] [Related]
47. Utility of high b-value (2000 sec/mm2) DWI with RESOLVE in differentiating papillary thyroid carcinomas and papillary thyroid microcarcinomas from benign thyroid nodules. Wang Q; Guo Y; Zhang J; Shi L; Ning H; Zhang X; Lu Y PLoS One; 2018; 13(7):e0200270. PubMed ID: 30020961 [TBL] [Abstract][Full Text] [Related]
48. DNA Methylation-Based Method to Differentiate Malignant from Benign Thyroid Lesions. Barros-Filho MC; Dos Reis MB; Beltrami CM; de Mello JBH; Marchi FA; Kuasne H; Drigo SA; de Andrade VP; Saieg MA; Pinto CAL; Kowalski LP; Rogatto SR Thyroid; 2019 Sep; 29(9):1244-1254. PubMed ID: 31328658 [No Abstract] [Full Text] [Related]
49. Mean platelet volume could be a possible biomarker for papillary thyroid carcinomas. Baldane S; Ipekci SH; Sozen M; Kebapcilar L Asian Pac J Cancer Prev; 2015; 16(7):2671-4. PubMed ID: 25854344 [TBL] [Abstract][Full Text] [Related]
51. Mapping the Molecular Basis and Markers of Papillary Thyroid Carcinoma Progression and Metastasis Using Global Transcriptome and microRNA Profiling. Akyay OZ; Gov E; Kenar H; Arga KY; Selek A; Tarkun İ; Canturk Z; Cetinarslan B; Gurbuz Y; Sahin B OMICS; 2020 Mar; 24(3):148-159. PubMed ID: 32073999 [TBL] [Abstract][Full Text] [Related]
52. Expressions of miRNAs in papillary thyroid carcinoma and their associations with the clinical characteristics of PTC. Hu J; Li C; Liu C; Zhao S; Wang Y; Fu Z Cancer Biomark; 2017; 18(1):87-94. PubMed ID: 28085013 [TBL] [Abstract][Full Text] [Related]
53. Identification of SERPINA1 as single marker for papillary thyroid carcinoma through microarray meta analysis and quantification of its discriminatory power in independent validation. Vierlinger K; Mansfeld MH; Koperek O; Nöhammer C; Kaserer K; Leisch F BMC Med Genomics; 2011 Apr; 4():30. PubMed ID: 21470421 [TBL] [Abstract][Full Text] [Related]
54. Decreased serum exosomal miR-29a expression and its clinical significance in papillary thyroid carcinoma. Wen Q; Wang Y; Li X; Jin X; Wang G J Clin Lab Anal; 2021 Jan; 35(1):e23560. PubMed ID: 33368640 [TBL] [Abstract][Full Text] [Related]
58. Effect of BRAF V600E mutation detection of fine-needle aspiration biopsy on diagnosis and treatment guidance of papillary thyroid carcinoma. Qi W; Shi C; Zhang P; Feng L; Wang J; Chen D Pathol Res Pract; 2020 Aug; 216(8):153037. PubMed ID: 32703500 [TBL] [Abstract][Full Text] [Related]
60. From sequencing to validation: NGS-based exploration of plasma miRNA in papillary thyroid carcinoma. Cui W; Xuan T; Liao T; Wang Y Front Oncol; 2024; 14():1410110. PubMed ID: 39169938 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]