BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35678168)

  • 21. Bayesian data fusion: Probabilistic sensitivity analysis for unmeasured confounding using informative priors based on secondary data.
    Comment L; Coull BA; Zigler C; Valeri L
    Biometrics; 2022 Jun; 78(2):730-741. PubMed ID: 33527348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study.
    Fewell Z; Davey Smith G; Sterne JA
    Am J Epidemiol; 2007 Sep; 166(6):646-55. PubMed ID: 17615092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte Carlo sensitivity analysis for unmeasured confounding in dynamic treatment regimes.
    Rose EJ; Moodie EEM; Shortreed SM
    Biom J; 2023 Jun; 65(5):e2100359. PubMed ID: 37017498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bayesian modeling of cost-effectiveness studies with unmeasured confounding: a simulation study.
    Stamey JD; Beavers DP; Faries D; Price KL; Seaman JW
    Pharm Stat; 2014; 13(1):94-100. PubMed ID: 24446072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitivity analysis of treatment effect to unmeasured confounding in observational studies with survival and competing risks outcomes.
    Huang R; Xu R; Dulai PS
    Stat Med; 2020 Oct; 39(24):3397-3411. PubMed ID: 32677758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bespoke Instruments: A new tool for addressing unmeasured confounders.
    Richardson DB; Tchetgen Tchetgen EJ
    Am J Epidemiol; 2022 Mar; 191(5):939-947. PubMed ID: 34907434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Summarizing causal differences in survival curves in the presence of unmeasured confounding.
    Martínez-Camblor P; MacKenzie TA; Staiger DO; Goodney PP; O'Malley AJ
    Int J Biostat; 2020 Sep; 17(2):223-240. PubMed ID: 32946418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. It's not all about residual confounding: a plea for QBA for epidemiologic researchers and educators.
    Fox MP; Adrien N; van Smeden M; Suarez E
    Am J Epidemiol; 2024 May; ():. PubMed ID: 38754869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A flexible, interpretable framework for assessing sensitivity to unmeasured confounding.
    Dorie V; Harada M; Carnegie NB; Hill J
    Stat Med; 2016 Sep; 35(20):3453-70. PubMed ID: 27139250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative Bias Analysis of the Association between Occupational Radiation Exposure and Ischemic Heart Disease Mortality in UK Nuclear Workers.
    de Vocht F; Martin RM; Hidajat M; Wakeford R
    Radiat Res; 2021 Dec; 196(6):574-586. PubMed ID: 34370860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A simulation-based bias analysis to assess the impact of unmeasured confounding when designing non-randomized database studies.
    Desai RJ; Bradley MC; Lee H; Eworuke E; Weberpals J; Wyss R; Schneeweiss S; Ball R
    Am J Epidemiol; 2024 May; ():. PubMed ID: 38825336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders.
    Vanderweele TJ; Arah OA
    Epidemiology; 2011 Jan; 22(1):42-52. PubMed ID: 21052008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Importance of Making Assumptions in Bias Analysis.
    MacLehose RF; Ahern TP; Lash TL; Poole C; Greenland S
    Epidemiology; 2021 Sep; 32(5):617-624. PubMed ID: 34224472
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Treatment effects in the presence of unmeasured confounding: dealing with observations in the tails of the propensity score distribution--a simulation study.
    Stürmer T; Rothman KJ; Avorn J; Glynn RJ
    Am J Epidemiol; 2010 Oct; 172(7):843-54. PubMed ID: 20716704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emulating Target Trials With Real-World Data to Inform Health Technology Assessment: Findings and Lessons From an Application to Emergency Surgery.
    Moler-Zapata S; Hutchings A; O'Neill S; Silverwood RJ; Grieve R
    Value Health; 2023 Aug; 26(8):1164-1174. PubMed ID: 37164043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validity evaluation of indirect adjustment method for multiple unmeasured confounders: A simulation and empirical study.
    Byun G; Kim H; Kim SY; Kim SS; Oh H; Lee JT
    Environ Res; 2022 Mar; 204(Pt A):111992. PubMed ID: 34487697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acetaminophen use during pregnancy and the risk of attention deficit hyperactivity disorder: A causal association or bias?
    Masarwa R; Platt RW; Filion KB
    Paediatr Perinat Epidemiol; 2020 May; 34(3):309-317. PubMed ID: 31916282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating the impact of unmeasured confounding with internal validation data: an example cost evaluation in type 2 diabetes.
    Faries D; Peng X; Pawaskar M; Price K; Stamey JD; Seaman JW
    Value Health; 2013; 16(2):259-66. PubMed ID: 23538177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. When Can Nonrandomized Studies Support Valid Inference Regarding Effectiveness or Safety of New Medical Treatments?
    Franklin JM; Platt R; Dreyer NA; London AJ; Simon GE; Watanabe JH; Horberg M; Hernandez A; Califf RM
    Clin Pharmacol Ther; 2022 Jan; 111(1):108-115. PubMed ID: 33826756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A probabilistic bias analysis on the magnitude of unmeasured confounding: The impact of driving mileage on road traffic crashes.
    Thiesmeier R; Skyving M; Möller J; Orsini N
    Accid Anal Prev; 2023 Oct; 191():107144. PubMed ID: 37473524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.