These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35678176)

  • 1. Ultrahigh Kinetic Inductance Superconducting Materials from Spinodal Decomposition.
    Gao R; Ku HS; Deng H; Yu W; Xia T; Wu F; Song Z; Wang M; Miao X; Zhang C; Lin Y; Shi Y; Zhao HH; Deng C
    Adv Mater; 2022 Aug; 34(32):e2201268. PubMed ID: 35678176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Superinductors by Quantum Coherence Effects for Enhancing Quantum Computing.
    Fan B; Samanta A; García-García AM
    Phys Rev Lett; 2023 Jan; 130(4):047001. PubMed ID: 36763448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum.
    Grünhaupt L; Maleeva N; Skacel ST; Calvo M; Levy-Bertrand F; Ustinov AV; Rotzinger H; Monfardini A; Catelani G; Pop IM
    Phys Rev Lett; 2018 Sep; 121(11):117001. PubMed ID: 30265102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Granular aluminium as a superconducting material for high-impedance quantum circuits.
    Grünhaupt L; Spiecker M; Gusenkova D; Maleeva N; Skacel ST; Takmakov I; Valenti F; Winkel P; Rotzinger H; Wernsdorfer W; Ustinov AV; Pop IM
    Nat Mater; 2019 Aug; 18(8):816-819. PubMed ID: 31036961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wafer-Scale MgB
    Kim C; Bell C; Evans JM; Greenfield J; Batson E; Berggren KK; Lewis NS; Cunnane DP
    ACS Nano; 2024 Oct; 18(40):27782-27792. PubMed ID: 39316430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid rf SQUID qubit based on high kinetic inductance.
    Peltonen JT; Coumou PCJJ; Peng ZH; Klapwijk TM; Tsai JS; Astafiev OV
    Sci Rep; 2018 Jul; 8(1):10033. PubMed ID: 29968751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and Characterization of Superconducting Resonators.
    Cataldo G; Barrentine EM; Brown AD; Moseley SH; U-Yen K; Wollack EJ
    J Vis Exp; 2016 May; (111):. PubMed ID: 27284966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the thin film characteristics for optimal performance of superconducting kinetic inductance amplifiers using a rigorous modelling technique.
    Tan BK; Boussaha F; Chaumont C; Longden J; Navarro Montilla J
    Open Res Eur; 2022; 2():88. PubMed ID: 37767223
    [No Abstract]   [Full Text] [Related]  

  • 9. Duality picture of Superconductor-insulator transitions on Superconducting nanowire.
    Makise K; Terai H; Tominari Y; Tanaka S; Shinozaki B
    Sci Rep; 2016 Jun; 6():27001. PubMed ID: 27311595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. nanoSQUID operation using kinetic rather than magnetic induction.
    McCaughan AN; Zhao Q; Berggren KK
    Sci Rep; 2016 Jun; 6():28095. PubMed ID: 27296586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tunable coupler for superconducting microwave resonators using a nonlinear kinetic inductance transmission line.
    Bockstiegel C; Wang Y; Vissers MR; Wei LF; Chaudhuri S; Hubmayr J; Gao J
    Appl Phys Lett; 2016 May; 108(22):. PubMed ID: 29332947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraordinary kinetic inductance of superconductor/ferromagnet/normal metal thin strip in an Fulde-Ferrell state.
    Marychev PM; Vodolazov DY
    J Phys Condens Matter; 2021 Jul; 33(38):. PubMed ID: 34225266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilizing Gate-Controlled Supercurrent for All-Metallic Tunable Superconducting Microwave Resonators.
    Ryu Y; Jeong J; Suh J; Kim J; Choi H; Cha J
    Nano Lett; 2024 Jan; 24(4):1223-1230. PubMed ID: 38232153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A ballistic graphene superconducting microwave circuit.
    Schmidt FE; Jenkins MD; Watanabe K; Taniguchi T; Steele GA
    Nat Commun; 2018 Oct; 9(1):4069. PubMed ID: 30287816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of kinetic inductance in transport properties of shunted superconducting nanowires.
    Lin SZ; Roy D
    J Phys Condens Matter; 2013 Aug; 25(32):325701. PubMed ID: 23838641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Characterisation of Titanium Nitride Subarrays of Kinetic Inductance Detectors for Passive Terahertz Imaging.
    Morozov D; Doyle SM; Banerjee A; Brien TLR; Hemakumara D; Thayne IG; Wood K; Hadfield RH
    J Low Temp Phys; 2018; 193(3):196-202. PubMed ID: 30839694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable superconducting nanoinductors.
    Annunziata AJ; Santavicca DF; Frunzio L; Catelani G; Rooks MJ; Frydman A; Prober DE
    Nanotechnology; 2010 Nov; 21(44):445202. PubMed ID: 20921595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive Readout of the Kinetic Inductance of Superconducting Nanostructures.
    Nulens L; Chaves DAD; Harb OJY; Scheerder JE; Lejeune N; Brahim K; Raes B; Silhanek AV; Van Bael MJ; Van de Vondel J
    Nano Lett; 2024 Sep; 24(36):11149-11155. PubMed ID: 39197107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A kinetic-inductance-based superconducting memory element with shunting and sub-nanosecond write times.
    McCaughan AN; Toomey E; Schneider M; Berggren KK; Nam SW
    Supercond Sci Technol; 2018; 32(1):. PubMed ID: 32116414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave Properties of Superconductors Close to the Superconductor-Insulator Transition.
    Feigel'man MV; Ioffe LB
    Phys Rev Lett; 2018 Jan; 120(3):037004. PubMed ID: 29400488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.