BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 35678272)

  • 1. Towards a transferable nonelectrostatic model for continuum solvation: The electrostatic and nonelectrostatic energy correction model.
    Vassetti D; Labat F
    J Comput Chem; 2022 Jul; 43(20):1372-1387. PubMed ID: 35678272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model.
    Aleksandrov A; Lin FY; Roux B; MacKerell AD
    J Comput Chem; 2018 Aug; 39(22):1707-1719. PubMed ID: 29737546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalizing Continuum Solvation in Crystal to Nonaqueous Solvents: Implementation, Parametrization, and Application to Molecules and Surfaces.
    Vassetti D; Oǧuz IC; Labat F
    J Chem Theory Comput; 2021 Oct; 17(10):6432-6448. PubMed ID: 34488338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of SAMPL-1 hydration free energies using a continuum electrostatics-dispersion model.
    Sulea T; Wanapun D; Dennis S; Purisima EO
    J Phys Chem B; 2009 Apr; 113(14):4511-20. PubMed ID: 19267492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvation forces on biomolecular structures: a comparison of explicit solvent and Poisson-Boltzmann models.
    Wagoner J; Baker NA
    J Comput Chem; 2004 Oct; 25(13):1623-9. PubMed ID: 15264256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.
    Sun H; Wen J; Zhao Y; Li B; McCammon JA
    J Chem Phys; 2015 Dec; 143(24):243110. PubMed ID: 26723595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters.
    Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent Dependence of (14)N Nuclear Magnetic Resonance Chemical Shielding Constants as a Test of the Accuracy of the Computed Polarization of Solute Electron Densities by the Solvent.
    Ribeiro RF; Marenich AV; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2009 Sep; 5(9):2284-300. PubMed ID: 26616615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models.
    Dzubiella J; Swanson JM; McCammon JA
    Phys Rev Lett; 2006 Mar; 96(8):087802. PubMed ID: 16606226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvation Thermodynamics of Solutes in Water and Ionic Liquids Using the Multiscale Solvation-Layer Interface Condition Continuum Model.
    Rahimi AM; Jamali S; Bardhan JP; Lustig SR
    J Chem Theory Comput; 2022 Sep; 18(9):5539-5558. PubMed ID: 36001344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.
    Rocklin GJ; Mobley DL; Dill KA; Hünenberger PH
    J Chem Phys; 2013 Nov; 139(18):184103. PubMed ID: 24320250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free Energies of Solvation with Surface, Volume, and Local Electrostatic Effects and Atomic Surface Tensions to Represent the First Solvation Shell.
    Liu J; Kelly CP; Goren AC; Marenich AV; Cramer CJ; Truhlar DG; Zhan CG
    J Chem Theory Comput; 2010 Mar; 6(4):1109-1117. PubMed ID: 20419072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the Solute Cavity on the Solvation Energy and its Derivatives within the Framework of the Gaussian Charge Scheme.
    Garcia-Ratés M; Neese F
    J Comput Chem; 2020 Apr; 41(9):922-939. PubMed ID: 31889331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model.
    Zhao DX; Yu L; Gong LD; Liu C; Yang ZZ
    J Chem Phys; 2011 May; 134(19):194115. PubMed ID: 21599052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New implicit solvation models for dispersion and exchange energies.
    Pomogaeva A; Chipman DM
    J Phys Chem A; 2013 Jul; 117(28):5812-20. PubMed ID: 23799302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p
    Aleksandrov A; Roux B; MacKerell AD
    J Chem Theory Comput; 2020 Jul; 16(7):4655-4668. PubMed ID: 32464053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling nonpolar and polar solvation free energies in implicit solvent models.
    Dzubiella J; Swanson JM; McCammon JA
    J Chem Phys; 2006 Feb; 124(8):084905. PubMed ID: 16512740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.