BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 35678333)

  • 1. Kinetics and mechanisms of cyanobacterially induced precipitation of magnesium silicate.
    Lamérand C; Shirokova LS; Petit M; Bénézeth P; Rols JL; Pokrovsky OS
    Geobiology; 2022 Jul; 20(4):560-574. PubMed ID: 35678333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Clay Minerals on Carbonate Precipitation Induced by Cyanobacterium
    Wang X; Kong X; Liu Q; Li K; Jiang Z; Gai H; Xiao M
    Microbiol Spectr; 2023 Jun; 11(3):e0036323. PubMed ID: 37039655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of diffusive transport on carbonate mineral formation from magnesium silicate-CO2-water reactions.
    Giammar DE; Wang F; Guo B; Surface JA; Peters CA; Conradi MS; Hayes SE
    Environ Sci Technol; 2014 Dec; 48(24):14344-51. PubMed ID: 25420634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Sequestration in Biogenic Magnesite and Other Magnesium Carbonate Minerals.
    McCutcheon J; Power IM; Shuster J; Harrison AL; Dipple GM; Southam G
    Environ Sci Technol; 2019 Mar; 53(6):3225-3237. PubMed ID: 30786208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbially Accelerated Carbonate Mineral Precipitation as a Strategy for in Situ Carbon Sequestration and Rehabilitation of Asbestos Mine Sites.
    McCutcheon J; Wilson S; Southam G
    Environ Sci Technol; 2016 Feb; 50(3):1419-27. PubMed ID: 26720600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Formation of huntite by Lysinibacillus sp. GW-2 strain].
    Xu Q; Li F; Zhang C; Li X
    Wei Sheng Wu Xue Bao; 2015 May; 55(5):607-15. PubMed ID: 26259485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced olivine carbonation within a basalt as compared to single-phase experiments: reevaluating the potential of CO2 mineral sequestration.
    Sissmann O; Brunet F; Martinez I; Guyot F; Verlaguet A; Pinquier Y; Daval D
    Environ Sci Technol; 2014 May; 48(10):5512-9. PubMed ID: 24735106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the secondary mineral products generated by microbial iron respiration in Archean ocean simulations.
    Nims C; Johnson JE
    Geobiology; 2022 Nov; 20(6):743-763. PubMed ID: 36087062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive sequestration of atmospheric CO2 through coupled plant-mineral reactions in urban soils.
    Manning DA; Renforth P
    Environ Sci Technol; 2013 Jan; 47(1):135-41. PubMed ID: 22616942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Aqueous Carbonation of Calcium Silicate through Acid and Base Pretreatments with Implications for Efficient Carbon Mineralization.
    Zhai H; Chen Q; Yilmaz M; Wang B
    Environ Sci Technol; 2023 Sep; 57(37):13808-13817. PubMed ID: 37672711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous carbonation of peridotites for carbon utilisation: a critical review.
    Rashid MI; Benhelal E; Anderberg L; Farhang F; Oliver T; Rayson MS; Stockenhuber M
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):75161-75183. PubMed ID: 36129648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon dioxide sequestration of iron ore mining waste under low-reaction condition of a direct mineral carbonation process.
    Kusin FM; Hasan SNMS; Molahid VLM; Yusuff FM; Jusop S
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):22188-22210. PubMed ID: 36282383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomineralization of carbonate and phosphate by moderately halophilic bacteria.
    Sánchez-Román M; Rivadeneyra MA; Vasconcelos C; McKenzie JA
    FEMS Microbiol Ecol; 2007 Aug; 61(2):273-84. PubMed ID: 17535298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production.
    Rau GH; Carroll SA; Bourcier WL; Singleton MJ; Smith MM; Aines RD
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10095-100. PubMed ID: 23729814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.
    Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Rim G; Roy N; Zhao D; Kawashima S; Stallworth P; Greenbaum SG; Park AA
    Faraday Discuss; 2021 Jul; 230(0):187-212. PubMed ID: 34042933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors affecting the direct mineralization of CO2 with olivine.
    Kwon S; Fan M; DaCosta HF; Russell AG
    J Environ Sci (China); 2011; 23(8):1233-9. PubMed ID: 22128528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of secondary phase formation on the carbonation of olivine.
    King HE; Plümper O; Putnis A
    Environ Sci Technol; 2010 Aug; 44(16):6503-9. PubMed ID: 20704252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Clostridium sp. MH18 strain induces the formation of carbonate minerals].
    Guo W; Ma H; Li F; Wang J; Su N
    Wei Sheng Wu Xue Bao; 2012 Feb; 52(2):221-7. PubMed ID: 22587001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation.
    Béarat H; McKelvy MJ; Chizmeshya AV; Gormley D; Nunez R; Carpenter RW; Squires K; Wolf GH
    Environ Sci Technol; 2006 Aug; 40(15):4802-8. PubMed ID: 16913142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.